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ABSTRACT

This study is concerned with some of the properties of roll waves
that develop naturally from a turbulent uniform flow in a wide rectangu-
lar channel on a constant steep slope. The wave properties considered
were depth at the wave crest, depth at the wave trough, wave period,
and wave velocity. The primary focus was on the mean values and
standard deviations of the crest depths and wave periods at a given
station and how these quantities varied with distance along the channel.

The wave properties were measured in a laboratory channel in
which roll waves developed naturally from a uniform flow. The Froude
number F (F = un/«/g—ﬁ; s u = normal velocity, h = normal depth,

g = acceleration of gravity) ranged from 3.4 to 6.0 for channel slopes
S0 of .05 and .12 respectively. In the initial phase of their development
the roll waves appeared as small amplitude waves with a continuous
water surface profile. These small amplitude waves subsequently
developed into large amplitude shock waves. Shock waves were found
to overtake and combine with other shock waves with the result that the
crest depth of the combined wave was larger than the crest depths before
the overtake. Once roll waves began to develop, the mean value of the
crest depths hmax increased with distance. Once the shock waves
began to overtake, the mean wave period Tav increased approximately
linearly with distance.

For a given Froude number and channel slope the observed quan-

tities h /h_, T'(T'=S_T__+g/h_), and the standard deviations of
max n (o} av n




h /h_and T', could be expressed as unique functions of 2/h

max n n

(£ = distance from beginning of channel) for the two-fold change in hn

occurring in the observed flows. A given value of h /h_ occurred

max n

at smaller values of '{’/hn as the Froude number was increased. For

a given value of h /h_ the growth rate 3h /34 of the shock waves
max' n max

increased as the Froude number was increased.

A laboratory channel was also used to measure the wave properties
of periodic permanent roll waves. For a given Froude number and
channel slope the hrnax/hn vs. T' relation did not agree with a theory
in which the weight of the shock front was neglected. After the theory
was modified to include this weight, the observed values of hmax/hn
were within an average of 6.5 percent of the predicted values, and the
maximum discrepancy was 13.5 percent.

For hmax/hn sufficiently large (hmax/hn > approximately 1. 5)
it was found that the h /h_vs. T' relation for natural roll waves

max n
was practically identical to the hmax/hn vs., T' relation for periodic
permanent roll waves at the same Froude number and slope. As a
result of this correspondence between periodic and natural roll waves,
the growth rate aHmax/M’ of shock waves was predicted to depend on

the channel slope, and this slope dependence was observed in the

experiments.
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CHAPTER I

INTRODUCTION

When water flows down a long and sufficiently steep open channel,
it is found that the depth of flow is not uniform as it would be if the
same channel had a very small slope. The flow is characterized by
a series of hydraulic bores that extend across the width of the channel
and propagate downstream. Across these bores or shocks the depth
of flow varies abruptly. Between successive bores the depth of flow
varies gradually. Waves of this kind are termed roll waves and flows
with such waves are called slug flows by some workers. Figure 1
shows a typical roll wave train.

In 1904 Cornish (1)* observed and elegantly described roll waves
in prismatic or artificial channels which is the type of channel in
which they are usually observed. However they have also been observed
in a superglacial stream (2) which indicates that roll waves are not
restricted to artificial channels.

The maximum depth of flow in a roll wave train must necessarily
be greater than the normal or undisturbed depth. Thus a prismatic
channel designed to convey a discharge at normal depth, may not be
capable of conveying this same discharge with roll waves present
without some of the water leaving the confines of the channel. A

dramatic example of this was observed by Holmes (3) in a channel

*Numbers in parentheses refer to publications listed in the
Bibliography.
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Fig. 1. View of roll waves in Santa Anita Wash,
Arcadia, California, about one mile down-~-
stream of inlet, discharge about 195 cfs




that had water overtopping the 8 ft side walls when the discharge was
estimated to be less than 25 per cent of the design discharge. Thus
the practical need for understanding the mechanics of roll waves is
clear.

In general one would like to be able to predict whether a channel
will exhibit roll waves for any particular discharge. Furthermore,
if roll waves are to be present, it is desirable to know where they will
start, and how high they will be at any section of the channel. From
the present knowledge (1967) of roll waves, one can determine the
necessary conditions for roll waves to exist. However the sufficient
conditions (the length of channel), and the dimensions of a developing
roll wave train have not been defined.

The purpose of this investigation is to describe the geometric
properties of roll wave trains that develop naturally from a turbulent
flow at normal depth in a wide rectangular channel on a constant slope.
This was done by means of experiments in a steep laboratory channel
where roll waves formed naturally. Some analytical work also aided
in the understanding of the basic phenomenon.

In Chapter II the previous work on roll waves is summarized.

In Chapter III theories for small amplitude perturbations on a uniform
flow, and large amplitude periodic permanent roll wave trains are
presented. Chapter IV describes the laboratory experiments per-

formed, the results of which are in Chapter V. In Chapter VI these

results are discussed and compared with theory where possible.




The large amplitude theory is examined closely in Chapter VII
and modified to substantially improve the agreement between theory
and experiment. In Chapter VIII methods for utilizing the results
of this study to determine maximum depths for roll wave trains are

presented. In Chapter IX the primary results and conclusions are

stated.



CHAPTER II

PREVIOUS STUDIES

This chapter summarizes the significant analytical and experi-
mental work that has been done on roll waves. First, the basic
differential equations that are used in all of the analytical studies to

be discussed will be considered.

II-A BASIC EQUATIONS
The cantinuity equation for a flow of an incompressible fluid in

an open channel is,

At + (uA)X =0 (2. 1)

where A = A(x,t) is the cross-sectional area of the fluid, u = u(x,t) is
the average velocity (Q/A, where Q = Q(x,t) is the discharge in volume
of fluid per unit of time) over A, x is the coordinate along the channel,
t is time, and the subscripts x and t denote partial derivatives with
respect to these variables.

Flows with roll waves are characterized by typical horizontal
dimensions (wave lengths) that are large compared to typical vertical
dimensions (water depths), so that the well-known shallow-water
equations are valid. For a turbulent flow in an inclined channel, the
integrated (over the cross-section A) form of the momentum equation

is,

3

u
u, +au ux+(1-G‘)KAt+g b =g -

[e]
t T ok (2. 2)

o=



In this equation:

S
o

sin §, § = angle of inclination of channel;

1]

h(x,t) = depth of flow in cross section;

g = gravitational constant (32. 16 ft/sec?);

o = la J u?® dA = velocity distribution coefficient; (2. 3)
Ay AP
uP = up(x, y,z,t) = fluid velocity at the point (y, z) in the

cross section A;

p = mass density of fluid;

T, = 'ro(x,t) = shear stress in the x-direction averaged over
the channel walls and bottom; and
r = r(x,t) = A/ (wetted perimeter of channel) = hydraulic radius.

Equation 2. 2 can be derived from the Navier-Stokes equations by
assuming that the predominate motion is in the x-direction, and thus
Equation 2.2

for example the term v, is small compared to u

t £
implies that the pressure distribution in a cross section is hydrostatic.
A particularly lucid derivation of this equation has been given by
Keulegan and Patterson (4).

In all of the studies concerning roll waves, To has been evaluated
by using a relation derived from uniform flow considerations. A
uniform flow is one in which all partial derivatives in the x-direction
are zero, d /3 x = 0, and by definition the depth of flow for a uniform

flow is the normal depth, hn' For example, from the Chezy equation

there results,

- 2
To =pf un/8 (2.4)




where u is the average velocity (Q/A) for uniform flow, and f is the
Darcy-Weisbach friction factor. It has been assumed that this same
relation is valid for unsteady, gradually varied flow, where u is
replaced by u. For uniform flows f varies with the Reynolds number
and/or the relative roughness. In some roll wave studies it has been
assumed that f does not vary in the x-direction and is equal to its
value for uniform flow. Fowever in cases where f has not been held
fixed, its variation in the x-direction has been assumed to have the
same dependence on the Reynolds number (smooth channel) or relative

roughness (rough channel) as it does for uniform flows.

II-B CRITERIA FOR UNSTABLE FLOW

The majority of the literature on roll waves is concerned with
the determination of the necessary conditions under which roll waves
can exist. The approach has been to investigate the stability of a
uniform flow on a constant slope by imposing small free-surface
perturbations on it. If these perturbations increase in amplitude as
time increases, the flow is said to be unstable. Presumably these
small amplifying perturbations would eventually result in the clearly
visible large amplitude roll waves. (Figure 1)

Jeffreys (5) considered a wide rectangular channel, uniform
velocity distribution (a = 1), and an unvarying friction factor (f). For
this case, the condition for an unstable flow was that the Froude

number F, (F = un/ Jghn, hn = normal depth) be greater than 2.




Since Jeffreys, many others (6,7,8,9) have derived criteria of
varying degrees of generality., Dressler and Pohle (7) considered
a wide rectangular channel, o = 1, and a general power law resistance
relation ('ro = const. un/hm). Craya (6) considered a channel of
arbitrary shape, a = 1, and a power law resistance. Iwasa (8)
developed a general expression for the critical Froude number (Fcr)
applicable for arbitrary channel shape, friction law, and value of o .
Using Iwasa's result for a rectangular channel of any width, Koloseus
(9) has evaluated values of Fo, by using the logarithrhic resistance law
for both a smooth and a rough boundary.

From all of these studies there results Fo, values which in
general depend on the channel shape, frictional resistance law, and
the value of . The value of Fcr is 2.0 for a wide rectangular channel
with an unvarying f. If f is evaluated from the logarithmic resistance
law, Fcr for a wide rectangular channel (rough or smooth) depends
slightly on f, but is about 1.6 for f = .02. Fcr is increased as @ is
increased, and also increases as the rectangular channel becomes
narrower. In general, channels of other shapes, such as circular or
triangular, have a higher Fbr than a rectangular channel.

A flow with a value of F considerably higher than F_, may not
exhibit visible roll waves. This fact was noted by Montouri (10) in
his investigation of field data collected in Europe and Russia. This
led him to develop a criterion for predicting formation of roll waves

(but not their dimensions), involving not only the value of Fcr’ but

also the length of the channel, From this criterion, one finds that




as the discharge and hence normal depth increases, the length required
for visible roll waves to develop also increases. This basic observa-

tion is most important in studying the development of roll waves.

II-C LARGE AMPILITUDE WAVE STUDIES

Prior to 1940 Thomas conducted experiments on artificially
produced periodic permanent roll waves (to be considered in Chapter
III) in a laboratory channel. This study is referred to in a paper by
Thomas (11) but personal communication with him revealed that his
results were never published and have since been lost. However, he
did state that his experiments gave a satisfactory check on the
theoretical analysis of periodic permanent waves.

In 1954 laboratory work on roll waves was done at Kyoto Uni-
versity in a smooth channel 36 feet long. This work was referred to
in a later paper by Ishihara et al. (12). By contacting personnel at
Kyoto, it was found that the data taken were not sufficient to describe
the growth of roll waves as a function of the distance along the
channel. In fact for many runs depths were not measured.

In a recent paper (1965), Ghambarian (13) discusses some
laboratory work that has been done in the Armenian Soviet Socialist
Republic. The channel slope varied from S0 =,10 to .86, and the
length from 10 m to 60 m. Roll waves developed naturally and
measurements of maximum depth, wave length, wave velocity, and
wave period were taken at various stations along the channel. Fre-
quency distributions of these quantities were measured as a function

of distance along the channel.
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Unfortunately the results of maximum depth vs. distance for all
slopes are compressed into one small graph and only the experimental
relations are shown without the numerical data that were used to
derive these relations. However in the paper for S0 = .10 by
Ghambarian and Mayilian (14) the experimental points were taken from
a graph. These data, along with some extracted from the 1965 paper
will be presented in Chapter V. More information concerning these
experiments will be presented also.

In 1965 the Los Angeles County Flood Control District conducted
a field study in Santa Anita Wash located in Arcadia, California. Data
on the roll waves that developed were taken and will be presented in
Chapter V along with a description of the experiments.

The first attempt to describe large amplitude roll waves
analytically was by Thomas (11). He considered a periodic train of
waves of constant shape and velocity (permanent). By piecing together
two gradually varied water-surface profiles for unsteady flow, he
managed to construct a wave profile similar to observed roll waves.
Dressler (15), using Thomas's basic ideas, was able to find closed
form solutions for a wide rectangular channel with an unvarying

friction factor. In Chapter III the procedure for constructing these

periodic permanent solutions will be given.
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II-D FRICTION FACTORS IN UNSTABLE FLOWS

When the Froude number for a flow is greater than Fcr’ the flow
is said to be unstable. Some investigators have found that in unstable
flows the friction factor measured in a reach of uniform flow is a
function of the Froude number as well as the relative roughness (rough
boundary) or Reynolds number (smooth boundary). Koloseus (16)
found this Froude number effect in a rough channel, and Rouse (17)
found it in a smooth channel.

In the course of the present investigation friction factors were
measured in two smooth channels: a 130 ft tiltable channel, and a
steep aluminum channel. The Froude number effect noted above was
not detected in either of these channels. These results for the 130 ft
channel are included in a published discussion of Rouse's paper (17),
which is in Appendix I. The hydraulic characteristics of the steep

aluminum channel are given in Chapter V.

II-E SUMMARY

After presenting the basic equations used for roll wave investi-
gations, the significant studies that have been done on roll waves were
discussed. The criterion for unstable flow can be expressed by a
critical Froude number which in general depends on the channel shape,
frictional resistance law, and the velocity distribution in a cross
section. Some analytical work on non-linear waves has been done for
a periodic permanent wave train. The only available laboratory data
on roll wave development were discussed briefly and will be presented

in Chapter V, along with some available field data.
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CHAPTER III

ANALYTICAL INVESTIGATION

The laboratory results to be presented in Chapter V show that
the geometric properties of roll waves (i.e. maximum and minimum
depth, wave length, etc.) are not only functions of distance along the
channel, but vary from one wave to another at a fixed station. This
was observed both for the small amplitude waves with a continuous
water surface (which occurred downstream of the uniform flow and
upstream of the shock waves), and the large amplitude shock waves.
Thus a complete theory for describing natural roll waves must be able
to predict the frequency distributions of the geometric properties as
a function of distance. Needless to say, no such theory exists.

In this chapter two theories are presented for periodic wave
trains; one for small amplitude sinusoidal waves, and the other for
large amplitude permanent waves with shocks. Because of the
periodicity assumption, it is clear from the above description that
these theories do not directly relate to natural roll waves. However
it will be shown in Chapter VII that the large amplitude theory is at
least indirectly related to natural roll waves in terms of average
values of the geometric properties. Periodic permanent waves were
produced in the laboratory channel and in Chapter VI their character-
istics will be compared with the theory. Also in Chapter VI it will
be shown that some trends derived from the small amplitude theory

agree with the observations on the small amplitude natural waves.
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n1-A SMALL AMPLITUDE THEORY

is Statement and Solution of Problem

Jeffreys (5) imposed a small sinusoidal perturbation on a uniform
flow in a wide rectangular channel with an unvarying friction factor.
The result was that for a value of F of two the disturbance was
neutrally stable, or its amplitude neither increased or decreased with
time. In fact all of the work on stability criteria discussed in
Chapter II was concerned with finding this neutrally stable condition.

The object of this investigation, as stated above, is to study
the development of natural roll wave trains from a uniform flow. This
development only occurs if the uniform flow is unstable and therefore
the growth rates of small perturbations for Froude numbers above 2.0
are of interest.

For a wide rectangular channel (r =h), a = 1, and the simplifying

assumptions outlined in Chapter II, equations 2.1 and 2.2 become,

h, + (uh) =0 (3. 1)
u tuu +gh =gS_ (1 - u® /F? gh), (3.2)

after using the relation,
f = SSO/F‘? (3.3)

which results from assuming that f does not vary from its value at
uniform flow. To render these equations dimensionless the following

dimensionless quantities are introduced:
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x' =%fX, A = wave length; (3.4)
t' = untlx, u = normal velocity (q/hn); (3.5)
H = h/hn, hn = normal depth; and (3.6)

= u/un. (3.7)

Equations 3.1 and 3.2 can now be written as,
Ht' + (UH)XI =0 (3.8)
2 _ 2 _ u2
Ut' - UUx' + Hx'/F = (SO/F ) ()‘/hn)(l U2 /H) (3.9)

where F is the Froude number for uniform flow (F = un/Vghn).
Equations 3.8 and 3.9 are now linearized by assuming that the
deviations from the undisturbed or uniform flow condition are small.

This assumption is expressed as,

1 + U (3.10)

H=1+n (3.11)
where U' and 1 are the perturbation quantities which are small com-
pared to unity. It is further assumed that the derivatives of U' and n
are also small compared to unity. Substituting equations 3. 10 and
3.11 into 3.8 and 3.9, and neglecting products of any two small terms

(i.e. U'U'x,, U"r}{,, 'r]U'x,, etc.), yields two linear equations,
Mo My + UL, =0 (3.12)

Ul + 0, + Ny /F? = (SO/FQ) (A/h_) (n-2U") (3.13)




15

The quantity U' is then eliminated from equations 3.12 and 3. 13 to give

a second order linear partial differential equation for 7,
(1-1/F2) m_, o +2n 0+ Ny +(S /F?) (/b ))(Bn,+2n,) =0 (3.14)
A sinusoidal perturbation can be expressed as the real part of,
n=n_ exp [i 2 (x! —Ct')] (3.15)

which is equivalent to,

n = ner" Gt i [i 2m (x* - C_t') ] (3. 16)

where:
N = the amplitude at t' = 0;
G = C1_+iCi dimensionless complex velocity;
Cr = dimensionless phase velocity of the perturbation
n; and
Ci = dimensionless number pertaining to the growth rate.
2nC.t!

To convert the amplitude of the perturbation (‘r]oe i) from a function

of time to a function of distance, the expression,
£ =ct (3.17)

is used, where £ is the dimensional distance over which the wave
train travels in the time t, and c is the dimensional phase velocity.

Using the expression,
C_=c/u (3.18)
T n

and equations 3.5 and 3.17, an expression for t' can be written as,
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t' = (b_/C_A) (/b ) (3.19)

Then equation 3.16 can be expressed as,

2t Ci/CrY) (so/Fg) (L/hn) . (3. 20)

i

. xp [iZw (x' - Crt')]

where Y is defined by,
= 2
Y =(S_/F?) (\/h ). (3.21)

Y is a dimensionless wave length, and the term (ZwCi/CrY) will be
referred to as the amplification factor.

The problem is reduced to finding a solution for the amplifica-
tion factor and Cr' When these two quantities are known, equation
3. 20 shows that the behavior of n will be known. To obtain the
expressions involving Ci and Cr’ equation 3,15 is substituted into

equation 3. 14 which results in,
2n [2C - €2 - (1 - 1/F?) | +1¥(3-2C) = 0 (3. 22)
Separating real and imaginary parts of this equation leads to,
n[zc +c3-c2-a-1uF)]+cy=o0 (3. 23)
41 Ci (1 - Cr) +Y (3 - ZCr) =0, (3.24)
These two equations give,

C

r

(3Y +4T\'Ci)/(2Y +41TCi) (3.25)

)
I

1/V/1 - (2C_ + c’%1 + ci ] CiY/Tr) (3. 26)
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These expressions show that the quantities Cr and Ci are functions of
Y and F, and thus the amplification factor can also be expressed in
terms of Y and F. The functional relationships for the amplification
factor and the phase velocity were determined numerically for values
of F of 2.5, 3.5, and 5.0, and are shown in figures 2 and 3.

The neutrally stable solution occurs when the amplitude does not
change with time which requires the value of Ci to vanish. Then from

equations 3.25 and 3. 26 there results,

C
1

FE=E2 (3.28)

3/2 (3.27)

which was the solution obtained by Jeffreys (5).

For small values of Y (Y << 1) equations 3.23 and 3. 24 become,
2C +C2 -C2-(1-1/F3)=0 (3.29)

T i T
Ci (1 - Cr) =0 (3.30)

Equation 3.30 requires that Cr equal unity, or that Ci is of the same
order of magnitude as Y. If Cr is unity, equation 3, 29 shows that Ci
must be imaginary which it is not. Therefore Ci is also small, and

equation 3.29 is further simplified to,
Ci- ZCr+(l -1/F2) =0 (3.31)
from which there results,

Cr=l + 1/F (3.32)
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Then equation 3. 24 yields,
ZﬂCi/CrY =F(1/2F - 1)/(1 + F) (3.33)

This asymptotic solution for the amplification factor is shown on

figure 2.

For large values of Y (Y>> 1) equations 3. 23 and 3.24 become,
n[zcr -c2 - (1 - 1/F2)] +C.Y =0 (3.34)

and
Y (3 - ZCr) =0 (3.35)

from which results,

Cr = 3/2 (3.36)

and
2m Ci/CrY =(1/4 - 1/F?) 4723 /3Y? (3.37)

This asymptotic solution is shown on figure 2.

2. Discussion of Solution

The solution for m is given by equation 3.20 where the
amplification factor and phase velocity are shown in figures 2 and 3,
respectively. At a fixed time t 2 0, the solution describes a train of
sinusoidally shaped waves, each wave having the same amplitude,
phase velocity, and wave length. Furthermore this train of waves

extends indefinitely along the channel because x was not restricted in
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any way. As tincreases, the amplitude of each wave increases ex-
ponentially (if F > 2), but according to equation 3.20 the wave shape
and phase velocity remain the same.

Amplitudes of natural roll waves increase as the waves travel
along the channel, and ultimately shock waves are formed. Therefore
it is clear that at a fixed time the amplitudes of natural roll waves in-
crease in the downstream direction, whereas in the theory it was
assumed that all waves had the same amplitude at a fixed time. It is
likely that a theory in which the amplitudes of the waves increased in
the x-direction (at any given time) would predict different growth rates
than the periodic theory considered here.

Boundary conditions other than the initial conditions (periodic in
x)used here would be required to obtain a better model for natural roll
waves, although it is not obvious what these might be. In general this
would lead to a more difficult problem than was considered above,
because of the additional dependence on x. However the above theory
is useful for obtaining at least gualitative results concerning the
effect of wave length and Froude number on the growth rate.

The growth rate will be defined as the rate of increase of the
maximum depth (or the amplitude) with respect to distance along the

channel. From equation 3.20 the growth rate becomes,

a'nmax/a({,/hn) = nmax(Z“Ci/CrY)(So/Fg) (3.38)
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where Nmax is the amplitude,

Ny =M, €XP [(chi/CrY)(SO/Fz)(L/hn)] (3. 39)

m

which varies with £. Equation 3.3 shows that the term SO/F2 is
related to the friction factor which varies very little with slope or
Froude number in a given channel. Therefore it suffices to examine
the amplification factor to determine the effect of wave length and
Froude number on the growth rate.

From figure 2 the growth rate is seen to increase as the wave
length decreases and essentially to attain its maximum value at values
of Y such that the shallow water theory is still valid. For example
with F = 5 the maximum amplification factor is reached at about
Y = .1, so that the value of )‘/hn is about 50 if the slope is .05 which
is a practical situation. The occurrence of a wave length with a
maximum growth rate is usually interpreted to mean that this will be
the observed wave length in a situation where disturbances of all wave
lengths are amplifying. In this case one would expect to observe any
wave length corresponding to the small values of Y where the curves
of figure 2 are almost horizontal.

Figure 2 shows that the growth rate increases as the Froude
number increases. Transferring this result to natural roll waves, it
is not unreasonable to expect that roll waves will appear at increasingly
shorter distances from the beginning of the channel as the Froude
number is increased, providing the initial disturbances are of the

same size.
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By considering a problem where 1 was prescribed as a function
of time at the entrance to a channel, Lighthill and Whitham (18) found
the solution valid near the wave front of the disturbance initiated at
the entrance. The amplitude of their solution is precisely the same
as the amplitude of the above solution for small values of Y (equations
3.33 and 3.39). Although the full significance of this is not clear, it

presumably serves as a check on the present work.

I1-B. LARGE AMPILITUDE PERIODIC PERMANENT ROLL WAVE
THEORY

The method of solution presented here is essentially that used
by Dressler (15) except that the introduction of the normal depth into
the theory is new.

il Statement and Solution of Problem

A wide rectangular channel with a friction factor that does not
vary from its value at uniform flow is considered (equation 3.2). A
permanent wave is one whose shape and velocity does not change with
time or position. Thus for a permanent wave the t variable can be
eliminated by introducing a coordinate system that moves with the
wave at the velocity of the wave. Such a coordinate for a wave travel-

ing in the + x direction is X = x - ct, where c is the constant wave

velocity. Thus for a permanent wave, u(x,t) = u(X), and h(x,t) = h(X).

The derivatives are transformed by,

d3/d3t = -c 3/3X, 3/3x =3/3X. (3. 40)
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Equations 3.1 and 3.2 reduce to two ordinary differential

equations in u and h. Combining to eliminate u gives,

3 _ - K)2 2
dn/ax = s =ik - K) /gF (3.41)
h® -h®
(<2
where
K = (c - u) h = constant (3.42)
and
hi = K®/g. (3.43)

This definition of hc will prove to be very convenient.

The shock condition which relates hmax to hmin is now con-
sidered (figure 4). It is assumed that the thickness of the shock is
sufficiently small so that the x-component of its weight is small com-
pared to the pressure forces, the pressure distribution is
hydrostatic , and the velocity distribution is uniform (a = 1). These
assumptions will be discussed in Chapter VII, with the aid of the
experimental results. Equating the pressure forces across the shock

to the net momentum flux through the shock results in,

- +/hmax ﬁhmax ﬂmin (3. 44)
€ = %min En . 2 : '
min

This is a familiar form for wave velocities of shallow water waves.

This can also be written,

h /h

max’'  min

=1/z[«[+s——-'—")i-1]. (3. 45)

(c-u
mi
ghmin
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Setting c equal to zero in equation 3.45 gives the expression commonly
used for a hydraulic jump on a horizontal channel. Thus the shock
considered here can be regarded as a moving hydraulic jump.

Using the expression for K and the definition of hC, equation

3.45 can be written,

h /b . =1/2 [Jl +8 (h_/h_ )° -1 ] ) (3. 46)

max ~min

From equation 3.46 it is seen that when hc /hmin equals unity, the

value of h /h_. 1is also unity. Furthermore if h_ is less than
max min C

h . ; h is required to be less than h__ . which is meaningless.
min max min
Therefore,

h /h z 1 (3.47)

¢’ "min

Solving equation 3.46 for hmax/hc gives,

h__ /b =1/2 [«/(hmin/hc)z +8h_/h___ - hmin/hc] (3.48)

from which it is clear that,

hmax/hc >1 (3.49)
Therefore h is in the closed interval fromh . to h or,
c min max
h . <h <h (3.50)
min c max

Now if the wave train is assumed periodic, there is only one
value of h_ . and h for all waves. Egquation 3.50 insures that h
min max C

must exist at some section between successive shocks on the gradually

varying water surface. However equation 3.4l requires the value of
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dh/dx to approach infinity at h = hc unless the numerator vanishes at
h = hc' A periodic solution with dh/dx infinite at hc would appear as
in figure 5, where hC is a point of inflection. However a point of
inflection requires d®h/dX?® to vanish at h = hc’ which Dressler showed
to be impossible.

The correct solution is one in which the numerator of equation
3.41 vanishes at h = hc’ which results in a smooth water surface,
concave upwards. Setting the numerator of equation 3.41 to zero for
h = hc’ and using equation 3,43 to eliminate K, results in an expression

for c,

cl/gh_=1+F, (3.51)

Both the numerator and denominator of equation 3. 41 are cubic
algebraic expressions with hc as one of the three roots. This common

root can be factored out and equation 3.41 can be written as,

dh/dX = S (h-hg) (h hp) (3.52)

© h# fh¥* +1

where an asterisk denotes division by hc’ The dimensionless

guantities h’% and h’g are the other two roots, besides hc {or h’é = 1),
of the numerator. By equating the numerator of equation 3.52 to that
of equation 3.41, and using equation 3.43 to eliminate K and equation

3,51 to evaluate c, there results,

h% = (1/2F%) [1+2F = /Tt 4F | (3.53)
where the positive square root is used for h*;, and the negative square

root for ht, so that h>; > h%{) .
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Equation 3.52 can be integrated, and with X =0 at h = hc there

results,
h%- h¥* h*-h¥
S X¢¥=(h*-1)+Aln—=3a3 - Bln (3. 54)
o 1 -h¥ 1-h¥
a
1 +h* + h¥? 1 + h¥ + h¥?
where A = Bz (3.55)
* - hX k - h¥%
ha hb ha hb
and X* = X/h_

This relation between X* and h* has the general shape shown in
s . : % b3 i
figure 4. Evaluating equation 3.54 at hmax and hmin gives an

expression involving the wave length,

% = (h& _ - h¥* . i
S, A% = (h¥ - h%. )+ AK, - BK, (3.56)
h# _ -h* h¥ __-hi
where K, = ln ool Kg = In oo (3.57)
min a min b
and A* = X/hc.

In a particular problem the channel slope, So’ and the Froude
number at uniform flow, F, will be known. Then the relationship
between X* and h* can be found from equation 3.54. However to
determine h* , equation 3.56 shows that S )% and h* . must also

max o min
be known, which requires two additional relations involving ) *,
h#* , and h* . . The shock condition , equation 3.46, provides a
max min

relation between the quantity h* and h* . . Therefore a unique
m min

/b
ax min

solution exists between h* and X* (including h* and h* ., ), for a
max min
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given So and F, if the value of So)‘* is also fixed. The above solution
is essentially the form of the solution that Dressler (15) presented.
The above solution is in terms of the depth hc which can not be
found from the values of So and F (assumed to be given). Therefore
it is desirable to have the solution in terms of some known depth. The
most significant depth is the undisturbed or normal depth (hn). There-
fore an expression for hﬁ = hn/hc will be found. With the value of h!’{:
known, the solution can be expressed in terms of hn.
From the definition of the discharge per unit width and equation

3.42,
q(X) = uh = ch(X) - K (3.58)

The average discharge over one wave length, and thus the average

discharge over all waves, is then,

9

=10 ‘[Xq(X)dx = el J)\h(X)dX “K (3.59)

If the average depth is defined as,

h .= 1/ % J')\ h(X)dX (3.60)

then equation 3.59 is;

q,, =ch_ _ -K (3.61)

The normal depth depends only on the average discharge and Froude

number as can be seen from,

h /(Fgh_) (3.62)

n - c“'av/un = day
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An expression for h;li is found by eliminating 4 between equations
3.61 and 3.62, using equation 3.51 to evaluate c, and using equation

3.43 to evaluate K. The result is,
12 [ ]
hr'{ =| (1 +F) h:v -1{/F (3.63)

The final step is to find h;kv. First equation 3,60 is rewritten,

hk

¥ = 1/3% | TF px(Xx)ax*

h¥ /I J ) h*(X*)dX (3.64)
min

or when equation 3.52 is used to evaluate dX%,

h* 2 3
xhx = | max.,, h¥® +h* 41
So)‘ hav e (h*-h;‘) (h*-h}‘ff Al (3.65)

T J h¥
min

This can also be written as,

h*
% h¥E = max*[* < k) - _*]
S_M* hi_ _[.w h¥d [ % + A In(b*-h¥)-Bln (h*-h#) |- (3.66)
min

which is in a convenient form for integration by parts. Performing
this integration, and using equation 3. 56 to evaluate So)‘*’ leads to,

%2 - haR - - K. - %
1/2(hmax hmi_,n) + (A-B) (h;[knaX h;;in) + Ah;K1 Bth2 (3.67)

¥ = o £ -~ h* - .
h "% __- 5% 7+ AK, - BK,

From the above analysis it can be shown that for a given value of
F and So)‘/hn’ the wave shape and velocity are uniquely determined.

Equations 3. 63 and 3.67 show that,

¢ = *
h¥ = £, (F, h* _, h¥_ ) (3. 68)
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where f; is some function. From equation 3.56,

SMh = £, (F, b, hx. ) (3.69)

Dividing equation 3.69 by 3. 68 gives,

= * ES
SO)\/hn £, (F, h;nax, hmin) (3.70)
The shock condition, equation 3,46, gives a relation between h¥* <
and h* , ,
min
% = ES
hr;1ax f4 (hmin) (3.71)

For given values of F and S \/h_, h¥* and h* . can in principle be
o' 'n’ "max min
found from the last two equations. Equation 3. 68 is then used to
convert these to h /h_andh_. /h_. Then the value of h¥* from
max' n min' " n n
equation 3. 68 is applied to equation 3.51 to get c/.\/ghn . Therefore

it is correct to write,
hmax/hn = f5 (F, So)‘/hn)’ hmin/hn = f6 (F, So)‘/hn)’
c/\/ghn = f7 (F, So)‘/hn) (3.72)
The wave shape can be expressed as, (equation 3. 54),
h* = f8 (F, SOX*) {3 73)
Dividing this by equation 3. 68 gives,

h/hn = f9 (F, h¥ o BEL SOX/hn) (3.74)
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But equations 3.70 and 3. 71 show that h* and h* . are functions
max min

of F and SO)\/hn. Thus equation 3. 74 becomes,
h/h =f,4 (F, S A/h, S X/h ) (3.75)
which is equivalent to,
h/hn = f11 (X, F, Sok/hn) (3.76)

Therefore the wave shape (equation 3.76) and velocity (equation 3. 72)

are unique functions of F and Sox/hn. The wave period, T, is defined

by,
A = 6T (3.77)
which leads to the expression,
SM/h = (c/vgh (S, Tve/h ) (3.78)

However because c/w’ghn is a function of F and So”hn’

SO)\/hn = f12 (F, T') (3.79)

where T'=8 T g/h (3.80)
o n

Therefore one can prescribe T' instead of SO)\/hn.

The form of the equations is such that the general functions in
equations 3.72 and 3. 76 can not be written explicitly. The solutions
for c/+/gh_, h /h_, and h_. /h_are plotted in figure 6 for values

n max’ n min’ "n
of F of 2.0, 2.5, 3.5, and 5.0, and values of So)‘/hn up to 60. These
relations were found numerically using a digital computer and

the above relations. Instead of starting with values of F and So)‘/hn’
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roll wave theory




34

it was more convenient to start with values of F and h;knin and find the
resulting value of So)‘/hn' In this way no trial and error procedures
were required.

The asymptotic solution for large values of So)‘/hn can be
obtained by first observing from equation 3.52 that because the value
of dh/dX is zero at h* = h*, the minimum value of h* , is h%, Equa-

a min a
tion 3. 54 shows that SOX* approaches minus infinity at h;knin = h:, and
equation 3. 56 indicates that So)\* approaches infinity (because K;
approaches infinity)., Therefore for large values of So)‘/hn’ h;nin
approaches hg from above, and the water surface becomes parallel to
the channel floor at h* . .
min

The value of h /h__. 1is a function only of F for large values
max’ min

of So)‘/hn' It can be calculated from equations 3.53 and 3.46, which

for h* = h* ., become,
min

a
h;»;lin=(1/2F2)[1 t 2F + /T T 4F ] (3.81)
/P = 172 [Jl + (2/Bx )° - 1 ] (3. 82)

Because K, approaches infinity, equation 3.67 shows that h;r‘v becomes

equal to h* or h* . . Therefore equation 3. 63 can be written as,
a min
3/2 ]
£ = b -
hn [(l + F) h"in 1 |/F (3.83)

As So)‘/hn approaches infinity the distance from h* =1 (X% = 0) to

h* = h;:;nin also approaches infinity, whereas the distance from
h* =1 to h* = h* remains finite. Thus it is clear that the average
max

discharge must equal the discharge at hm.1n because the distance over
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which h__. occurs is infinite, and that h must equal h_ . . This can
min n min

be proven by working with equations 3. 83 and 3.81. To get a relation

between h;-"i and h;‘*nin’ F would have to be eliminated between 3. 83 and

3.81, but this is not a simple manipulation. However, by using an

arbitrary positive value of F in equation 3. 81 and substituting the

resulting value of h;knin into equation 3. 83, the value of h;’; is found to

correspond to that of h* . . Therefore as S A/h_ approaches infinity,
min (o] n

h* =h%* . =h* =h* (3.84)
a min av n
The wave velocity is then only a function of F,
= %
c/-\/ghn (1 +F)/hInin (3. 85)

where h;;;-xin is found from equation 3.81. Asymptotic values for large

SO)\/hn are indicated on figure 6.

2. Discussion of Solution

From figure 6 it is seen that hmax/hn increases with both F and
So)\/hn. At a Froude number of 2, this solution degenerates to uniform
flow. This indicates that there are no periodic solutions of the type
considered for Froude numbers of 2 or less. For the linear problem
considered in Section III-A a non-trivial solution existed for a Froude
number of 2, but the wave amplitude did not change with distance.

For a Froude number above 2, the wave amplitude increased exponen-
tially with distance. Thus, the behavior of the linear and non-linear

theories is quite compatible.
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The wave velocity has the expected value (c/,/ghn =1+F)ata
vanishing wave length (uniform flow). In both the linear and non-
linear theory it is seen that the term So)\/hn appears. This allows a
comparison between the wave velocities at a fixed value of F and Y.
For vanishing values of Y the values of C/Jghn are the same
(c /.,/ghn =1+ F), and for Y > 0 the non-linear wave velocity is
larger. This can be seen by comparing values given by figures 3 and
6 for fixed values of F and Y. This is because the wave amplitude of
the non-linear theory is not restricted to be small, and the velocity
of a shallow water wave increases with the amplitude.

As the wave length approaches infinity the wave shape and
velocity approach a finite solution which gives rather substantial
values of h /h_. This corresponds to one wave of infinite length

max' n
in a channel of infinite length. For this limiting case hmin approaches
h .
n

Schonfeld (19) has claimed to have found that only the solution
with h /h_ = 2.07 is a stable one. However, in his work relations

max’' n
were derived by assuming that there was a discontinuity in the water
surface at h = hn (in addition to the one at the shock). The above
solution has no discontinuities of this type, and therefore Schonfeld's
result is doubtful. A stability analysis of the periodic permanent solu-

tion may lead to some interesting results. This remains to be done.
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CHAPTER IV

LABORATORY EXPERIMENTS - APPARATUS AND PROCEDURE

IV-A INTRODUCTION AND OBJECTIVE

The two objectives of the laboratory experiments were:

1) To obtain information on roll wave trains that develop
naturally from a uniform flow; and

2) To obtain information on periodic permanent roll waves to
compare with theory. A long steep channel was constructed for this
study in the W, M. Keck Laboratory of Hydraulics and Water Resources.

In this chapter the steep channel and the apparatus used for the
measurements are described. The experimental procedure, including
a description of the quantities measured and the range of variables
used is also included. In the next section is a short description of

some preliminary work performed in a 130-ft channel.

IV-B PRELIMINARY EXPERIMENTS

A 130-ft tiltable laboratory channel 3.61 ft wide with a maximum
slope of 2% (i.e. sin 8 = .02 where § = angle of inclination from hori-
zontal) was utilized for some initial observations. It was found that,
because of insufficient length, roll waves were not formed in this
channel, even at the maximum Froude number of 2.65. Therefore
periodic disturbances were introduced at the inlet using a motorized
reciprocating sluice gate. The plan of these experiments was first

to make small disturbances and observe their growth in the 130-ft
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length of the channel. The next step of the plan was to increase the size
of the disturbances produced to correspond to that observed at the out-
let of the channel in the first experiment and to observe their growth.
By repeating this procedure it was thought that one could, in effect,
study the growth of waves in a very long channel. This objective was
only partially realized. The difficulty was that it was not possible to
produce waves at the sluice gate that had the exact size and shape of
those observed at the channel outlet. This made it impossible to
reliably piece together the different segments of the growing wave and
thus to predict from the experiments the wave growth as a function of
distance along the channel.

In these experiments there was one run in which the artificially
produced disturbances were large enough so that periodic permanent
waves were established near the downstream end of the flume. Because
the Froude number was less than any in the steep channel, the data on
wave shape and velocity for this run will be included in the next chapter.
The method of obtaining data in this 130-ft channel was quite similar to
that used in the steep channel which is described below. The periodic
wave profile was obtained from a pressure record similar to that in
figure 14. In the 130-ft channel the maximum and minimum depths
were measured with a point gage. These point gage measurements were
obtained at five locations across the 3.61-ft wide channel, and at five
meter intervals along the flume. The periodic waves were considered
to be permanent when the maximum and minimum depth did not change

over significant length. The 130-ft channel is described briefly in

Appendix I and in more detail by Vanoni (20) and Fischer (21).
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Iv-C APPARATUS

1. Steep Channel

The bulk of the experiments was carried out in an extruded
aluminum rectangular channel 4-5/8 in. wide and 1-13/16 in. high.
This shape is available commercially in lengths up to 16 ft. For a
channel length of 128 ft and slopes of .08429 and .05011, eight of
these 16-ft lengths were joined (see figure 7). The length was later
changed to 80 ft with a slope of . 1192 by removing three of the 16-ft
lengths. The lengths of channel were joined by plates bolted to both
lengths as shown in figure 8. The ends of the two lengths were
separated by about 1/8-in. and body putty was used to fill the void.
Finally the joint was sanded to give a very smooth finish.

The channel was supported at 5-1/2-ft intervals by brackets
bolted to 2 x 4-in. timbers which were fixed to the concrete wall of
the laboratory. J-bolts were used to clamp the channel to the brackets.
Two adjusting bolts at the brackets were used to level the channel
transversely. For measurement of static pressure on the channel
floor, 1/32-in.diameter holes were drilled through the floor at the
approximate center line. These holes started at station 6 (6 ft down-
stream of station 0.0 shown on figure 11 ) and were put at 6-ft intervals
over the total length. A fitting was affixed to the underside of the
channel floor, to which a pressure transducer could be attached. The
details of the bracket and pressure hole can be seen in figure 9.

Figure 10 shows the principal dimensions at a station with a supporting

bracket.




Fig. 7. General view of channel, S = .08429, 4 =128 ft,
no flow ©

Negative No. 7836

Fig. 8. View of typical joint for channel
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Negative No. 7837

Fig. 9. View of channel showing support
bracket and pressure measuring
station
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The galvanized sheet steel inlet box had the same inside width as
the channel to avoid disturbances that would result from a contraction
or expansion. A drawing of the box is shown in figure 11 . Observa-
tions on the flow in the inlet are discussed in Chapters V and VI. A
plastic paddle hinged on the upstream wall of the inlet box and driven
by a variable speed fractional horsepower motor was used to create
periodic permanent waves. Figure 12 shows the inlet in operation.

Flow was supplied by a constant head tank located near the down-
stream end of.the channel. One reach of the supply line to the. inlet box
was a 3-in. didmeter pipe in which a 1-1/8-in. flange type orifice plate
was installed for measurement of flow rates. After installation this
orifice plate was calibrated volumetrically using a: mercury or water
manometer to record the pressure drop across the orifice plate.

The slope of the channel was changed twice after the original
setting. To obtain a given slope all the brackets were first placed at
approximately the desired elevation, and then the adjusting bolts at
each bracket were used to obtain the final elevation. A surveyor's
transit and a rod that could be attached to the channel was used in
obtaining the final elevation. The rod was graduated in .01-ft intervals
and was read to .00l ft with a vernier scale. The length of the channel
was measured with a steel tape with graduations of 1/16 in. Thus the
accuracy of the slope was controlled by the accuracy of the measure-
ments of the vertical distances. With the vertical distances accurate
to .001 ft, the channel slopes for the 120 ft channel (. 05011 and .08429)

were accurate to . 00001 (.001/120), and for the 80 ft channel the slope

(. 1192) was accurate to .00002. Once one side of the channel at a
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Negative No. 7838

Fig. 12. View of inlet box and channel near inlet
with flow

Negative No. 7839

Fig. 13. Closeup view of rough channel
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particular bracket was at the correct elevation, a hand level was placed
on the channel and the lateral adjustment was made. Longitudinal align-
ment was accomplished by placing the channel a fixed lateral distance
from a 0.010 in, wire that was strung the length of the channel.
Measurements (e.g. maximum depths, periods, etc.) were taken
only at the pressure hole stations. Invert readings at five locations
across the channel were taken with a point gage at each of the pressure
hole stations. It was found that the channel bottom was an average of
about .010 in. lower at the center than it was near the side-walls for
stations not near one of the supporting brackets. At pressure hole
stations near one of the supporting brackets the channel bottom was
flat because of the clamping action of the J-bolts. At each station
a weighted average of the five invert readings was used to convert

water-surface readings to depths.

Two surface finishes were used for the channel. For the smooth
boundary an epoxy enamel was sprayed on the aluminum channel. A
rough surface was obtained by applying a uniform sand to the bottom
and walls of the channel immediately after they had been brush painted
with an enamel. The application of the sand consisted of covering the
bottom with sand and throwing it against the side-walls until no more
sand would stick. Three days later the water was turned on and the
excess sand was washed off, leaving a uniform roughness about one
grain diameter thick. Figure 13 shows this rough channel. The geo-
metric mean size of the sand grains, Dg’ and geometric standard

deviation, ¢ , were .595mm and 1. 11 respectively. Table 1 contains

the results of the sieve analysis of the sand.
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Table 1

Sieve Analysis of Sand in Rough Channel

Mesh per in (Tyler)

Sieve Opening mm

% Finer by Weight

16
20
24
28
32
35
42
48
60
65
100
150
200

«'991
.833
. 701
. 589
. 495
. 417
. 351
.295
. 246
.208
. 147
. 104
. 074

100. 00
99. 90
95. 10
42.70
3.88
.98
i)

« 25
oy

o iy
«09
.06
.03

Geometric mean size = 0. 595 mm

Geometric standard deviation = 1. 11
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2. Measuring and Recording Equipment

a. Pressure Transducer

Much of the data taken consisted of records of the floor
pressure as a function of time at the stations with pressure holes.
These pressure-records were converted to depth records, except for
the portion of the wave near the maximum depth, by the use ofa calibra-
tion. The method by which this calibration was obtained is explained
below in this section. These pressures were measured with a model
P7D pressure transducer manufactured by the Pace Engineering
Company. In this transducer deflections of a 0,004 in. stainless steel
diaphragm were measured by changes in magnetic reluctance of two
magnetic cores, and the resulting voltage changes were recorded by
a Sanborn series 150 recording oscillograph system. The transducer
is shown at the left end of the angle iron in figure 9. It was connected
to the pressure hole with a short piece of 3/16-in, plastic tubing, via
a three-way valve used for bleeding and calibration purposes. The
transducer and valve were mounted on a piece of angle iron so that the
whole assembly could be placed at any pressure hole station. Figure 14
shows a typical pressure record of shock-type roll waves.

b. Wire Gage and Point Gage

A particularly simple device was used to obtain the frequency
distributions of maximum depths,to calibrate the pressure transducer,
and to measure normal depths. The instrument will be referred to as
a wire gage. The wire gage, shown in figure 15, consisted of a stain-
less steel micrometer head(reading to 0.001 in.) mounted vertically

in a base of aluminum stock which rested on top of the channel walls,
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Fig. 15.

Negative No. 7840

View of wire gage and pressure
transducer with waves approach-

ing
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On the lower end of the micrometer head was attached a short piece of
0.020 in. diameter stainless steel wire. The aluminum base was
wired to the Sanborn recording system.

The oscillograph record from a wire gage is shown in figure 14.

As can be seen, the wire gage reading changed from its reading in air
only when the wire was in contact with the water. In figure 14 the wire
gage was directly over the pressure hole and high enough so that it
was in contact only with the wave peaks. The elevation of the wire was
changed by rotating the micrometer. It was found that the wire was
small enough (. 020 in. diameter) so that no water was observed to
hang below the lower end of it which would be undesirable.

The change in the wire gage reading on the oscillograph chart when the
wire was in contact with the flowing water indicates thatthe wire tip of the
wire gage was at a different electric potential when immersed inthe water
than when in the air. The difference in the potential was onthe order of 0.1
volt, Although the mechanism responsible for the existence of an electric
potential was not investigated, the response characteristics ofthe wire gage
were excellent for the measurements for which it was used.

A point gage was used to measure the elevation of the channel
bottom, and occasionally to obtain estimates of the average maximum
depth of small amplitude waves. This point gage was identical to the
wire gage except that instead of a small wire, a stainless steel point
was attached to the lower end of the micrometer head. These values

of average maximum depth were obtained by setting the point at a given

level and estimating what proportion of the wave crests that passed by
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were hitting the point. The average maximum depth was taken as that
depth corresponding to the elevation of the point at which about one-
half of the wave crests hit the point. By this procedure, repeatable
values of average maximum depth could be obtained for the small
amplitude roll waves.

c. Recording Equipment

The Sanborn recording oscillograph system, series 150, was
used for recording signals from the pressure and wire gages. A
carrier preamplifier model 150-1100 AS was used with the pressure
transducer, and a DC preamplifier model 150-1000 with the wire gage.
Figure 16 shows the four channel Sanborn unit which was used to
record two pressure traces and two wire gage records simultaneously.

d. Calibration of Pressure Transducer System

For conversion of a pressure record, such as in figure 14,
to a depth record, a calibration was required. From the resulting
depth record, only the minimum depths were taken. The maximum
depths were obtained from the wire gage record by a procedure
explained later. The maximum depths were not taken from the
pressure record for two reasons. First, the frequency response of
the system as described above was probably not adequate to record
the very fast rise in pressures encountered near the steep wave fronts.
Second, the pressures directly under the crests of the shock-waves
were probably not hydrostatically distributed, so that even if the floor

pressure were correctly recorded, the correct depth of flow could not

be found from them.
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Negative No. 7841

Fig. 16. View of 4-channel oscillograph
recorder with wire gage and
pressure transducer
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A calibration consisted of a relation between the depth of flow at
the center line of the pressure station in question, and the reading on
the recorder chart. An in situ calibration was obtained before each
run. When a pressure transducer was moved to another station, it
was calibrated again.

Both static and dynamic calibrations were obtained. A static
calibration was obtained by varying the level of water in the plastic
cylinder connected to the pressure transducer shown at the right side
of figure 9. This changed the pressure on the transducer and thus
the reading on the recorder chart. By measuring this water level in
the cylinder with the point gage and noting the corresponding chart
reading, a static calibration was developed. This calibration was
always linear.

A dynamic calibration was obtained by using a wire gage located
directly over the pressure hole. As illustrated in figure 14, when the
water level dropped below the level of the wire, a change in the wire
gage reading occurred. Thus at that exact time, the pressure record
must have corresponded to the elevation of the wire. By changing the
setting of the wire gage a complete dynamic calibration curve was
constructed. This calibration was linear also. Figure 17 shows a
typical calibration of the pressure measuring system.

In most cases the slopes of the static and dynamic calibrations
were the same. This indicated that the pressure being recorded was-
in fact only the static pressure, because the velocity, and thus the

velocity head, varied along the wave length. If part of this velocity

head were being recorded because of some imperfections around the
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pressure hole, the slopes of these two calibrations would be different.
However the two calibrations were not necessarily coincident because
of different reference levels from which the elevations were measured.
In all cases the dynamic calibration was used to get the values of
minimum depth. The static calibration was used mainly as an aid in
determining the slope of the dynamic calibration, and as a check on

the drift in the calibration, if any, during the run.

Iv-D EXPERIMENTAL PROCEDURE

l. Design of Experiments

Data were obtained on both naturally developed and periodic roll
waves for three different channel slopes. Two or three different dis-
charges were used on each slope. For the largest slope a rough
channel was also used. Normal depths were measured for all slopes
and discharges. Table 2 summarizes these channel conditions and
states what type of measurements were made.

The measurements desired on natural waves for a fixed slope and
discharge could not all be taken in one continuous run. Therefore it
was necessary to be able to duplicate a particular discharge quite
accurately. It was found that a manometer reading could be set within
1/2 percent of a given value, and thus the discharge was accurate to
1/4 percent. During a run the discharge was adjusted if necessary

to stay within this limit. The discharges in table 2 correspond to the

desired manometer readings.
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Table 2

Types of Measurements Obtained
for Each Slope and Discharge

Type of Measurements Obtained
S Q-cfs Channel Normal Periodic Natural
© Surface Depth Waves Waves
. 05011 .01700 Smooth x 5
.05011 .03433 Smooth x X b'e
. 05011 .05142 Smooth X b'd
. 08429 .02304 Smooth X x x
. 08429 . 04601 Smooth x X x
. 08429 . 06843 Smooth X x
.1192 .02831 Smooth x x X
.1192 . 08222 Smooth x X
.1192 . 007523 | Rough x
. 1192 .01717 Rough X x X
.1192 .04798 Rough x x x
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2. Normal Depth

Normal depths were measured in the reach of uniform flow up-
stream of the region in which developing roll waves were first detected.
The depth of flow was measured at five locations across the channel at
each station, and at a minimum of four stations that were 2 to 4 ft apart.

The water-surface level was very unsteady, which is characteristic
of high velocity flows. This made it very difficult to measure the
normal depth with a point gage. However the response characteristics
of the wire gage were particularly well suited for measuring the normal
depth. Figure 18 shows a typical oscillograph wire gage record when
it was set close to the normal depth.

In figure 14 it was seen that the wire gage oscillograph record
showed one reading when the lower end of the wire was in contact with
the flowing water, and another reading when the wire was out of the
water. When the wire was set near the normal depth in a uniform flow,
the reading on the oscillograph chart fluctuated rapidly between the
"in water' reading and the ''out of water' reading, as seen in figure 18.
It was found that by varying the elevation of the wire, the recorder
stylus made a darker impression either on the 'in water'' or the '"out
of water' side of the record. In figure 18 the .280-in. record shows
a darker impression on the "in water' side, whereas when the wire
was raised .010 in. to .290 in., the '"out of water' side of the record
shows a darker impression. It was assumed that the normal depth

corresponded to the case in which the recorder stylus made equivalent

impressions on the 'in water' and '"out of water'' sides of the record.
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Fig. 18. Typical wire gage record used to measure

normal depths
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Thus for the case shown in figure 18, the normal depth was taken to
correspond to the .286 in. wire gage reading with an accuracy of about
.002 in. In some cases with higher velocities this accuracy was

about . 004 in.

3. Wave Properties Measured

a. Naturally Developed Roll Waves

Four properties were measured:

(1.) Minimum depths (hmin) were obtained at stations

along the channel by using the pressure records (e.g. figure 14) and
dynamic calibrations. At each station values of minimum depth were
obtained for about 200 waves from which the average value and the
standard deviation were calculated. In some cases a frequency distri-
bution was constructed from these 200 values. This sample of about
200 measurements was found to be large enough to obtain consistent
results. A minimum depth measurement that was greater than the
average depth (i.e. average depth over many waves as estimated by
eye from the pressure record) was not considered in these calculations.
This eliminated those minimum depths between two waves that were
about to combine. As an example the minimum depth between the
wave crests 5 and 6 at station 72 on figure 47c would not be used in the
calculations,

(2.) Periods (T) at stations along the channel were obtained
from the pressure records. The period is simply the time period

between successive wave crests. Thus the period of a wave is its

length on the recorder chart .divided by the chart speed. When two
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waves were about to combine, they were considered to be two waves
as long as the peak of each wave was clearly delineated on the
pressure record. For obtaining standard deviations and frequency
distributions about 200 values of period were used. The average
period of the shock waves at a station was usually calculated from
about 1500-2000 waves to obtain consistent results,

(3.) Wave velocities (c) were obtained at stations along

the channel. This required using pressure records from two stations
taken concurrently. These stations were usually 6 ft apart but some-
times up to 18 ft apart. A particular wave was identified in each
record and then its travel time between the two stations determined.
For each pair of stations the average value, standard deviation, and
frequency distribution of wave velocity was based on about 200 obser-
vations. If two waves combined between the pair of stations being
used, their velocities were not computed because the wave velocity
changes appreciably during this overtaking process. The average
wave velocity was assumed to apply to a station midway between the
pair of stations.

(4.) Maximum depths (h ) were obtained on the center
max

line of the channel at stations along the channel. For the small ampli-
tude waves, a pressure record similar to figure 41 was used to obtain
the maximum depths. For reasons explained in Section IV-C, the
maximum depths of the large:amplitude shock-type waves were not
obtained from the pressure record, but from simultaneous wire gage
and pressure records. The method was first to construct a frequency

distribution of the maximum depths at a given station, and then to
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derive the average value and standard deviation from it. The frequency
distribution was determined by placing the wire at a known level and
obtaining a record of at least 200 waves. The wire gage level was

then changed and again 200 waves were recorded. For each level of
the wire, the percent of the waves that hit the wire could be found

using the pressure record to count 200 waves and the wire gage record
to count the number of hits. The wire was varied from a level where
all the waves hit up to a level where none of the waves hit. The wire
was moved through at least ten intervals of . 025 in. at most, and less
when the standard deviation of the maximum depths was small.

The standard deviation of the wave heights was found by plotting
the cumulative frequency distribution (value of hmax vs. percent
greater than or equal to) on arithmetic probability graph paper. This
paper is designed so that a Gaussian distribution plots as a straight
line. Figure 37 shows some typical results. In all cases the plotted
values could be well represented by a straight line. Thus the standard
deviation was found graphically as the difference between the 50
percent value and the 84.1 percent value. These values come from
the well known properties of a Gaussian distribution.

The average value of the maximum depths was calculated by
multiplying the percent of waves between two successive wire levels
by the average wire level (wire level at lower end point plus 1/2 of
interval), and summing all these products. This method gives a good
estimate of the true average for any frequency distribution as long as

the intervals are sufficiently small. Because the frequency distribution
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is Gaussian in this case, the average value, computed as above,
agreed with the mean value on the probability graph within about
.002 in.

A digital computer was used to compute the statistical quan-
tities for the four wave properties.

b. Periodic Permanent Roll Waves

Periods, wave velocities, and maximum depths were
measured in the same way as explained above for natural waves. How-
ever for periodic waves there was only one value for each of these.
quantities at a given station because all waves wére the same. In
addition, after the waves have reached a-permanent form the wave
properties do not change with station.

Wave shape, including minimum depth, was determined for most
of the periodic wave runs. The wire gage and bottom pressure
records were used to determine the profile of the waves including the
steep fronts. The sensitivity of measurement of the time interval
was increased by increasing the recorder paper speed. The distance
from the toe of the wave front to the point where the wire of the wire
gage intersected the water surface was obtained as the product of the

time interval and the wave velocity.

4, General Procedure for Natural and Periodic Roll Wave Runs

For runs with natural roll waves pressure records and wire gage
records were taken at two stations concurrently., These stations were
generally 6 ft apart but sometimes they were up to 18 ft apart. After

obtaining static and dynamic calibrations, a record of about 200 waves
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was taken at chart speeds of 25 or 50 mm/sec. Then maximum depths
were measured at both stations with the wire gages at a chart speed

of about 5 mm/sec for several wire elevations. Sometimes the instru-
ments were left at a particular pair of stations and data were taken at
two or three discharges before they were moved to another pair of
stations. More consistent results were obtained when measurements
at all stations were taken before changing the discharge. In this way
the data for one discharge could be obtained in about one week.

For runs with periodic waves the paddle in the inlet box (figure 11)
was oscillated at the desired period. The amplitude of the paddle
motion could be varied by adjusting the stroke of the connecting arm
from the motor. By suitable adjustment of the paddle amplitude a
periodic permanent wave could be produced. However it took a certain
length of channel before the periodic waves assumed a permanent form. |
This length of channel decreased for the larger paddle amplitudes. By
measuring the maximum depth over a considerable reach of the
channel, the region of permanent waves was found. The maximum
depths reported for the periodic permanent waves are averages of
measurements at four stations which generally covered about 30 to 40 ft
of channel. The velocity and profile of the periodic permanent waves
were also measured. In some cases, particularly for short wave
periods and thus short wave lengths, a periodic permanent wave train

would show signs of becoming nonperiodic near the downstream end of

the channel.
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CHAPTER V

PRESENTATION OF EXPERIMENTAL RESULTS

V-A INLET CONDITION

1. Smooth and Rough Inlet

a. Observations of Flow Near Inlet

The inlet condition was found to have a significant influence on
the distance from the inlet where roll waves could first be seen or
measured. If the channel bottom near the inlet was left smooth, just
as the rest of the channel, the natural roll waves developed further
upstream than they did when a small length of the channel bottom near
the inlet was artificially roughened.

By using continuous dye injection in the inlet box where the
velocities were low, the behavior of the flow in the channel near the
inlet could be observed. Observations of this kind were made for all
runs at slopes of .05011 and .1192. The general flow characteristics
were similar for all runs. For a smooth channel bottom, immediately
downstream of the reservoir the water surface was glassy smooth and
a dye stream just below the water surface remained intact. However
after a sufficient distance the dye stream began to mix with the water
until it was completely mixed. This point where mixing began was not
fixed for a given run, but oscillated up and down the channel in an
intermittent manner. The smooth water surface became roughened at
about the same station as the mixing began, and this station of surface

roughening oscillated also. A dye stream near the channel bottom had




66

a similar appearance and did not mix with the water until it was near
the station where the surface dye mixed.

The channel bottom near the inlet was made rough by placing a
6-in. length of fine mesh screen on the bottom of the inlet box, so that
the downstream end of the screen was about 0.30 ft upstream of
‘station 0.0, The widths of the screen and the channel were the same.
For this condition the behavior of the dye near the water surface was
similar to that in the smooth channel case, except that the mixing
occurred further upstream and the initial mixing point for a given
discharge was stationary. However the dye stream near the channel
bottom was completely mixed at the downstream end of the screen.
Dye streams at intermediate elevations began to mix at stations
between the end of the screen and the station where the surface dye
began to mix.

These observations can be adequately explained in terms of
boundary layers. For a smooth inlet a laminar boundary layer was
developed initially which eventually became turbulent in an inter-
mittent fashion. For a rough inlet a turbulent boundary layer was
initiated by the screen, and this boundary layer eventually reached
the water surface. Because no transition from laminar to turbulent
flow was required, no unsteadiness was introduced. More will be
said about this boundary layer notion in Section VI-C.

The general flow pattern described above for a smooth channel
bottomm was most clearly displayed at the lowest discharges corres-
ponding to a normal depth (hn) of about .2 in. For this value of hn

the dye stream stayed intact further downstream and the disturbances
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associated with the transition from laminar to turbulent flow were
sufficiently strong to create shock-type roll waves almost immediately.
However at normal depths of .3 and .4 in. the surface disturbances
near the zone of dye mixing were not as pronounced, although at times
these disturbances could be seen to eventually develop into roll waves.

Figure 19 shows water-surface profiles for a typical condition near
a smooth inlet at a normal depth of .2 in. Three surface profiles are
plotted; the depth during periods when the surface was smooth, the
average depth during periods when the surface was rough, and the
maximum depth during periods when the surface was rough. These
depths were measured using a wire gage and point gage at the channel
center line. From the trend of the maximum depth values, it is seen
that appreciable disturbances were developed, even at station 5.0 ft.
It is interesting to observe that the depth of the smooth water surface
fell below the normal depth. For a rough inlet at the same slope and
hn as shown on figure 19, comparable disturbances did not become
appreciable until about station 30.

For normal depths of .3 and .4 in., and a smooth inlet, the depth
did not jump discontinuously from a low depth (smooth water surface)
to a higher depth (rough water surface) as shown in figure 19. Instead
there was a more gradual transition from a smooth to a rough water
surface, although the point of roughening was oscillating somewhat.
For normal depths of .3 and .4 in, with a rough inlet, there was also
a gradual depth transition from a smooth water surface to a rough
water surface. However this surface roughness, and the associated

intersection of the turbulent boundary layer with the water surface,
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occurred farther upstream and in a more nearly steady manner than
the flow with a smooth inlet, This observation is consistent with the
fact that a turbulent boundary layer develops faster than a laminar one.
For the rough channel the conditions at the inlet were similar to those
in a smooth channel with a rough inlet because the sand grains caused
the initiation of a turbulent boundary layer as the screen did in the
smooth channel.

b. Adjustment to Rough-Inlet Condition

From the experiments it was found that with a smooth inlet,

a given value of average maximum depth (Fmax) occurred at a smaller
value of 4 ({ = distance from station 0.0) than with a rough inlet. This
fact is consistent with the observations on the flow conditions near the
inlet presented above. It was found that with a smooth inlet there
were surface disturbances which resulted from the intermittent manner
in which the water surface became rough. Presumably this inter-
mittency resulted from the laminar boundary layer becoming turbulent.
With a rough inlet the location of water-surface roughening was
stationary in time, at least much more so than with a smooth inlet,
and surface disturbances resulting from this surface roughening were
not observed. Therefore for a smooth inlet excess disturbances
(other than those present for a rough inlet) were provided to initiate
the development of roll waves.

Omne purpose of this study is to describe some geometric properties
of natural roll waves as a function of distance from the beginning of the
channel (i.e. 4). From the above discussion it is clear that even for

a fixed discharge, slope, etc., the value of a given property, say




70

}_lrnax’ at a given value of £ depends on the inlet condition. For the
data to be presented, this dependence on the inlet condition was
eliminated by adjusting the smooth-inlet results to a rough inlet.

For each smooth-inlet run this was done by adding a correction length
to the values of £ so that the adjusted development relations (e. g.
}_lma_x vs. 4) were the same as those that would have been obtained
with a rough inlet. For runs in which a rough inlet was used, and for
the runs in the rough channel, no correction was necessary.

To obtain a correction length for a smooth-inlet run, some data
are also required for the same hydraulic conditions with a rough
inlet., For each run two correction lengths were determined; one
from the }Tmax vs. £ relations for a smooth and rough inlet, and one
from the Tav vs. £ relations for a smooth and rough inlet. Tav is
the average wave period. For each of these relations the procedure
was to slide the two graphical relations (smooth inlet and rough inlet)
along the 4 axis until the data points for both the smooth and rough
inlet relations showed a unique relation. The amount of displacement
along the 4 axis was the correction length. For each run the two
correction lengths using the Emax and Tav relations were practically
the same.

In the runs with normal depths of .3 and .4 in., the data points
for the smooth and rough inlet could be made to define a unique relation
between Hmax and 4 or T__ and 1, over the range of Emax or T__ that
was represented by the data. In other words the effect of the smooth

inlet was to translate the development relations upstream without any

change of their shape with respect to the relations for a rough inlet.
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However for the runs with a normal depth of .2 in., the initial part
of the smooth-inlet development relation had a different shape than
the corresponding rough-inlet relation. This smooth-inlet effect on
the shape of the development curve is shown in figure 20 for the Fmax
development relation. As was mentioned in the last section, in the
smooth-inlet runs with a normal depth of .2 in., shock waves were
established quite close to the inlet as a result of the intermittent
behavior associated with the water surface becoming rough., With a
rough inlet, shock waves were formed from small amplitude waves
which developed from a uniform flow. These two different methods
by which shock waves were formed help explain the differences in the
development relations as shown for Kmax in figure 20. The develop-
ment relations to be presented in this chapter apply to roll waves that
develop from a uniform flow. Therefore, for the smooth-inlet runs
at a normal depth of .2 in., the data points that showed the smooth-
inlet effect on the shape of the development relations (e.g. the seven
smooth inlet points for B—max/hn less than about 1.6 in figure 20) were
not included on the development relations applicable to rough inlets.
The correction length for each run in which a smooth inlet was
used is shown in table 3. It is seen that the correction length
decreased as the normal depth increased, and decreased as the

channel slope was increased.
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Table 3

Correction Lengths Added to Smooth-Inlet Development Relations

s> Jn |.2inch | .3inch | .4 inch
% _

.05011 51 ft 25 16

. 08429 30 12.5 0

.1192 24 ] i

2. Drawdown Curves Near Inlet

From the water level in the inlet box the depth of flow decreased
to the normal depth in a short distance. Thesedrawdown curves
were measured for most runs and several are shown in figure 21.
Some depths were measured with a wire gage using the same technique
to obtain the average depth as was used to obtain the normal depths.
Other depths were measured with a point gage and were subject to the
larger errors of this method. In both cases only center-line depths
were measured. The main purpose of these measurements was to
determine the conditions near the inlet.

For normal depths of .3 and .4 in. it was found that the drawdown
curves were the same for a smooth or rough inlet. However for a
normal depth of .2 in., the smooth-inlet condition was very unsteady
as shown in figure 19. Thus the drawdown curves for a normal depth
of .2 in. in figure 21 are for a rough inlet. Station 0.1 ft was the

starting point of the drawdown measurements, whereas the reservoir
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is about 9 in. upstream of this station, Measurements upstream of
station 0.1 ft could not be obtained conveniently because the higher

walls interfered with the supporting mechanism for the depth gages.

V-B HYDRAULIC CHARACTERISTICS OF LABORATORY CHANNEL
From the measured normal depths the friction factors, Froudeé
numbers, and Reynolds numbers were calculated. These are pre-
sented in table 4. The relation of Darcy-Weisbach friction factor, f,
against Reynolds number, R, for the smooth channel is shown in
figure 23, on which is plotted the relation obtained experimentally
by Tracy and Lester (22) for a smooth, wide, rectangular channel.
The experimental points obtained in the present study follow this
relation quite well, with an average deviation of only 2, 2 percent,
The Froude numbers for the data in figure 23 vary from 3.45 to 5. 98,
which provides more evidence that the friction factor in unstable flow
is not a function of the Froude number as proposed by Rouse (17).
For a rough boundary the friction factor can be expressed in the

form,
V1/f =2.03 1og10(r/k) + constant (5.1)

which can be derived from the theoretical works of Prandtl and

von Karman as Keulegan has shown (23). Here k is the size of the
roughness elements which in this case was the geometric mean size
(. 595 mm) of the very well sorted sand. Figure 22 shows that two of

the data points follow the above relation where the constant is 2.17,

Y




Table 4

Hydraulic Characteristics of Laboratory Channel

Slope Channel | Width Water | Discharge | Normal | Normal | Froude | Friction | Reynolds
SO Surface b Toemp 0 Depth | Velocity No. Factor No. R
in C cis h u F f 4ru_/v
n n n
in fps
.05011 Smooth 4.625 23.7 . 01700 . 206 2. 57 3.45 . 0308 1.637{104
. 05011 Smooth | 4.625 23.1 . 03433 .314 3.40 3,71 . 0257 3.11
. 05011 Smooth | 4.625 22.7 . 05142 . 404 3. 96 3.81 . 0235 | 4.47
. 08429 Smooth 4.625 24.4 . 02304 .208 3.45 4,63 . 0289 2.24
. 08429 Smooth | 4.625 24.8 . 04601 .314 4.56 4. 96 . 0241 | 4.33
. 08429 Smooth | 4. 625 25.0 . 06843 . 404 5..27 5.06 . 0224 | 6.26
. 1192 Smooth | 4,635 21.9 . 02831 .210 4.20 5. 60 . 0279 | 2.60
« 1192 Smooth | 4. 625 22.3 . 08222 .409 6.26 5.98 - 0227 1 7.07
. 1192 Rough 4,55 23.2 . 007523 116 2: 05 3.68 . 0669 | .750
. 1192 Rough 4.55 22.6 . 01717 . 199 2: 73 3.74 . 0626 1. 63
. 1192 Rough 4.55 23.7 . 04798 + 375 4.05 4.04 . 0501 | 4.37

9L
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In figure 22 § is the thickness of the laminar sublayer and taken to be
11.6 v /s/'ro/p. From Nikuradse's experiments on rough pipes with a
uniform sand roughness, the equation for the velocity distribution is

(23),

up/u*= 8.5 + 5.75 log (y/k) (5.2)

where up is the velocity at a distance y from the rough wall, and u,
is the shear velocity. By applying this expression to a wide rectangular

channel, the constant in equation 5,1 is found to be 2. 12, which agrees

OIS 2

quite well with the experimental value of 2.17.

One data point in figure 22 is not consistent with the other two.
This is apparantly because the flow was in the transition region
between a rough boundary and a smooth boundary. This transition was
found in Nikuradse's data, (see for example Rouse (24) pg. 206) where
the deviation from the rough-wall relation began at a k/§ value of
about four. Thus the point of departure from the rough wall relation
for a channel is consistent with the rough-pipe results. Nikuradse's
data showed that as the value of k/§ was further decreased the data
points approached the smooth-boundary relation. The dashed line in

figure 22 indicates the general trend expected if more data were

available.
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V-C NATURAL ROLL WAVES

1. General Description

Roll waves developed from uniform flow in the laboratory channel.
The waves were first clearly visible in a reach of channel downstream
of the uniform flow where the waves acquired a steep front (shock wave)
which extended across the channel, This point where the waves formed
shocks was not fixed for a given run, but varied with each successive
wave which indicated that these natural waves were not periodic. In
fact, the most striking feature of these natural roll waves was the non-
periodicity at all stages of their development.

It was found that there was a station downstream of which no more
roll waves were formed, and the waves that had formed propagated in
a nonperiodic manner. In fact the velocities of the shock waves were
such that some waves would overtake and combine with the wave immedi-
ately downstream. In some cases this process was repeated two or three
times by the same wave before reaching the end of the channel.

The general appearance of a typical roll wave train in the labora-
tory channel is shown in figure 24. The nonperiodic nature of the shock

waves is evident in this photograph. Figure 25 shows a closeup view of

one complete wave. The depth variation along the wave can be seen by
noting the distance from the water surface to the top of the side wall.
By comparison with figure 1, the similarity of the laboratory and field
roll waves is seen. One noticeable difference is the absence of "white |
water' near the shock front of the laboratory waves. This is caused by

entrained air which occurs at high wave velocities unattainable in the

laboratory.
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2. Tabulated Basic Data

Because of the nonperiodic nature of natural roll waves, it is
necessary to measure the frequency distribution of the wave property
desired. This was done for the four properties maximum depth hmax’
minimum depth hmin' period T, and wave velocity c. The method
of obtaining these measurements was explained in Section IV-D. The
results in terms of average values and standard deviations for all runs
are contained in table 5. In some cases Emax values were estimated
by eye with a point gage. Point gage measurements were usually only
used to aid in finding the correction lengths for the smooth-inlet data.
For small amplitude waves (prior to forming shock waves) the -Hmax
values obtained from pressure records are more accurate than esti-
mates with the point gage. In table 5 the values which were used on
the graphs are indicated. Note that for the rough channel (table 5) alya

minimum amount of data were obtained. Thus the data on the graphs

are for smooth channels unless they are noted to be rough.

3. Dimensionless Development Relations

One main purpose of this study is to describe certain geometric
properties of natural roll waves. To make this description applicable
to any channel, these properties must be expressed in meaningful
dimensionless terms. To describe the development of the four
properties considered in this study, the relations hmax/hn'vs' L/hn,

h . /h_vs.2/h, S T g/h vs.4/h , andc__//gh_ vs. 4/h
in' 'n n° o n n av n n

m av

were used. These dimensionless expressions for the period and wave

velocity came from the periodic permanent wave theory in Chapter III.
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Table 5a Basic Data for Natural Roll Waves

So =.05011 hn =.206 inch
Rough Inlet Smooth Inlet (Correction to match rough inlet = 51 ft)
: o b o c [+]
St?ttlon I';mn.x hmax Tav (hmax)max max hmax Tav oT rl_miﬂ hmin Cav ac
inch inch sec inch inch inch sec sec | inch inch fps fps
6 .217% .254-8 .231 | .05 | .457 5, 58®
12 .217% .314-1 | .256 | .021 | .558 1729 | . 0214
18 .221% .349-1 .275 | . 035 676 3. 63 15
24 .225% .390-1 . 297 . 033 776 | .362|.157 .021
30 .234% .406-2 .311 | .040 | .816 2. %8 .
36 .239% .405-4 .319 | .043 .891 | .441|.148 |.019
42 . 248" .455-2 .333 | .046 |1.030
48 .259% . 469-2 .351 | .049 |1.119
54 L471-1 +355 .042 (1.214 3.90 17
60 .2901 .023 - 731 .469-3 . 364 .045 |1.290 | .611(.144 017
66
72
78 " .508-2 387 . 042 |1.487 3.99 16
84 . 324 . 030 . 964 .524-1 .391 .044 (1.549 | .704|.135 .015
90 .482-6 .392 .044 [1.653 4.02 16
96 .508-2 .396 .044 |1.695|.719].133 .018
102 .350I . 040 1. 178 .537-1 .404 .048 (1.777 4. 10 17
108 .537-1 . 417 .046 |[1.848 | .851|.140 [.015
114 P .529-3 .419 | .045 [1.900 4.12 18
120 « 31 .039 1.391 .529-1 .424 | .045 |[1.973 |.928|.134 |.013
Notes: a. Point gage measurement d. Based on 50 values
b. Based on 500 to 700 peaks e. Based on 30 values
c. Based on 1200 to 2000 peaks f. Based on 100 peaks per elevation
Unless noted otherwise, average values and standard deviations were computed from
about 200 values.
Smooth inlet data for stations 6 to 42 show the effect of a smooth inlet and were not
used on graphs on which wave properties were plotted as a function of L/hn.
The integers following the (hmax)ma.x values indicate the number of peaks out of 200
peaks that were higher than the value of (hmax)max indicated.

o

T

A

T
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Table 5b Basic Data for Natural Roll Waves

S_=.05011 h_=.314 inch
o n
Rough Inlet Smooth Inlet (Correction to match rough inlet = 25 ft)
. g [+ o
St?:wn Fmax hmax Tac (hmax)max Emax hmnx Tav Ly Hmin 1'lmin Cav Oc
inch inch sec inch inch inch sec sec inch inch | fps fps
6
12 .328% . 324¢
18 . 334d
24 .320% B
30 .349¢ .744 g
-~ 4 4.63
36 .331 .358 744
42 .372¢ .729 g
A 4.73
48 338 737
54 .481-2 .401 |.034 .733¢ .2a8"| Lo20" | , g
60 .359% .499-3 .414 |.040 .758°¢
e
66 .539-1 .434 |.042 .815e 4.81 15
72 .557-1 . 446 . 044 . 860 .370|.232 . 027
€
78 " . .528-4 . 446 . 041 .897e 4.82 15
84 .418 .036 . 767 .564-2 . 454 . 042 . 931 5377 | w221 . 027
e
90 .632-1 .478 . 055 1.044e 4.89 | .18
96 .608-3 .492 . 056 1. 084 .491|.218 .032
102 5 443b . 036 .874¢ .587-2 .481 |.046 1.098° 4.90 17
108 .612-4 .498 . 053 1.156% | . 502 |.214 .028
114 . 659-2 .514 |.060 1.248° 3
b e - =95 18
120 .474 .051 1.008 .659-2 .518 . 0595 1.304 .538(.204 | .027
Notes: a. Point gage measurement e. Based on 1600 to 3000 peaks
b. Based on 100 peaks per elevation {. Based on 50 values
c. Based on 600 peaks g. Based on 25 values

d. Measured from pressure record (50 values)

Unless noted otherwise, average values and standard deviations were computed from
about 200 values.

Rough inlet data on Fmax for stations 12 to 60 were not used on the graphs because the

smooth inlet data for this initial growth are more accurate.

values indicate the number of peaks out of 200
indicated.

The integers following the (hmax)max

peaks that were higher than the value of (hmax)max

»

TP

———— I T

o L e T
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Table 5c Basic Data for Natural Roll Waves
S _ =.05011 h_=,404 inch
o n
Rough Inlet Smooth Inlet (Correction to match rough inlet = 16 ft)
o o, [
St?:‘lon Iimax hmax Tav (hmax)max max l"max Tav OT Em"m hmin Cav G
inch inch sec inch inch inch sec sec inch inch | fps fps
[
12 . 416d
18 .42 1d
24 .4189
30 .413% L4219
36 L4229
02 .410% L4349 . 808
48 . 808
54 .416% . 4409 .805
60 .453° .805
66 L4292 .459¢ .822
72 . 480(‘l .822
78 L4492 .568-2 .487 |.034 .846
84 .564-8 .495 |.038 .854 | .286
a
90 .463 .627-1 .511 |.044 . 877 5.56 | .17
96 .608-11 .528 |.052 .890 | .325
102 . 509b . 036 . 848° .637-3 .528 |.050 .903 5.55 18
108 .687~1 .542 | .054 .922 | .402|.296 | .030
114 .684-2 .560 |.055 .986 5.55 1
b c N =19
120 . 546 . 046 .916 .684-4 .570 |.058 1.021 | .454|.293 | .033
Notes: a. Point gage measurement c. Based on 500 peaks
b. Based on 100 peaks per elevation d. Measgured from pressure record (50 values)

Unless noted otherwise, average values and standard deviations were computed from
about 200 values.

Rough inlet data on qu for stations 30 to 90 were not used on the graphs because

the smooth inlet data for this initial growth are more accurate.

values indicate the number of peaks out of 200
indicated.

The integers following the (hml.x)ml.x

peaks that were higher than the value of (h____)
max' max
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Table 5d Basic Data for Natural Roll Waves

S_ =.08429 h_=.208 inch
o n
Rough Inlet Smooth Inlet (Correction to match rough inlet = 30 ft)
Station b g 'I‘b th ) h %y Td o, 1Y %h c ]
ft max av max'max max max av T min min av c
inch sec inch inch inch sec sec inch inch | fps fps
6 .229°
12 .253°
18 .333-9 .286 |.030 . 457
24 .384-2 .314 | .035 .501
30 .251 .435-4 .344 | .042 577 4.95°
36 . 282 .484-4 . 369 . 048 . 631 .280
42 .314 .49 .534-2 .401 [.056 . 743 5. 09%
48 . 320 .51 .559-4 .415 | .057 . 808 | .362
54 . 351 .560-2 .426 | .056 . 851 5.18 | .24
60 .378 .61 . 608-1 .439 |.061 .905 | .402|.119 | .020
66 386 5.23 | .22
72 .383 212 . 606-2 .452 | .060 .996 | .400(.124 | .018
78 . 405 .607-1 .467 | .058 1.063 5.29 | .24
84 .433 .84 .631-3 .478 | .056 1. 128 | .479|.111 | .014
%0 =444 5.41 | .25
96 .432 .95 .632-2 .501 | .062 1.269 | .562).097 | .021
102 .472 .685-1 .511 | .069 1. 304 5.45 | .25
108 . 474 1. 15 L7111 . 517 . 067 1. 344 .600{.120 .019
114 .458 1..13 5.53 | .24
120 . 485 1.21 .684-3 .531 |.068 1.396 | .630|.118 | .019
Notes: a. Pointgage measurement d. Baged on 600 to 2200 peaks
Measured with stop watch e. Based on 50 values

c. Measured from pressure record (50 values)

Unless noted otherwise, average values and standard deviations were computed from
about 200 values.

Rough inlet data were used only to find the correction length (30 ft); they were not used
on the graphs.

Smooth inlet data for stations 6 to 30 show the effect of a smooth inlet and were not
used on graphs on which wave properties were plotted as a function of L/hn.

The integers following the (hmax)max values indicate the number of peaks out of 200

peaks that were higher than the value of (hmax)max indicated.

e
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Table 5e Basic Data for Natural Roll Waves

S° = .08429 hn =.,314 inch
Rough Inlet Smooth Inlet (Correction to match rough inlet = 12. 5 ft)
b o, o,
St?:ion 1-T:‘na\x Tav (hmax)max 1:;max hmax Ta.v U'l' 1'Tmin hmin Cav oc
inch sec inch inch inch sec sec | inch inch | fps fps
6 .329° ‘
12 .327¢ i
18 .325¢
24 .335°
30 .343°
36 .371¢ i
42 .459-5 . 406 . 026 . 520 .1971.255 | .018 6. 08 16 2
48 . 364 .509-5 .426 |.038 . 520 3
54 .390 .535-2 .432 . 045 . 505 .211].236 . 024 6. 17 .20 :
60 . 405 .583-1 .452 . 052 .537
66 . 450 .56 .613 6.26 | .21
72 . 465 .55 .656-2 . 501 . 066 . 649 .266(.203 .028
78 . 472 .60 .732-1 .539 |.071 .695
84 . 504 .65 .756-1 . 558 .073 <755
90 .488 .66 q 6.39 | .25
96 « 521 =7 i .757-2 .584 . 080 .829" | .323].175 .033 i
102 .544 .810-2 [ .600 |.077 .909¢ E
108 .569 .78 .811-1  [.612 |.o080 .9439 L
114 . 600 .83 . 6. 58 .26 l
120 . 600 .93 .859-1 .646 |.083 i.027 .411|.154 . 040 y
Notes: a. Point gage measurement c. Measured from pressure record (50 values) .
b. Measured with stop watch d. Based on 2000 peaks |
|
Unless noted otherwise, average values and standard deviations were computed from i
about 200 values. i
Rough inlet data were ueed only to find the correction length (12.5 ft); they were not used {
on the graphs. -
The integers following the (h ) valuee indicate the number of peaks out of 200 B
max max
peaks that were higher than the value of (hmax)max indicated.
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Table 5f Basic Data for Natural Roll Waves

S =.08429 h_ =.404 inch
o n

Smooth Inlet (No correction to match rough inlet)

Sta{:ion (hmax)max max ohmax Tav c'T Km'm ohmin €av oc
inch inch inch sec sec inch inch fps fps
18 .427%
24
30
36 .436%
42 .440%
48
54 .461%
60 .476
66 . 554
T2 .631-1 .514 . 044 . 565
78 .707-1 . 554 . 050 . 566
84 .706-2 .578 .053 . 582 .215
90 .626
96 .732-1 . 590 . 065 . 643 . 236
102 .785-5 . 621 . 080 . 686
108 .861-2 . 646 . 086 S 135 .285
114 . 808 7.27| 24
120 .859-3 . 670 . 088 . 865 .320 | .251 . 050

Notes: a. Measured from pressure record (50 values)

Unless noted otherwise, average values and standard deviations were
computed from about 200 values.

Correction length (zero) was found from rough inlet data (using point gage
and stop watch) and smooth inlet data (using point gage and stop
watch) which are not shown in table.

The integers following the (h values indicate the number of peaks

max)max
out of 200 peaks that were higher than the value of

(h ) indicated,
max’'max




Table 5g Basic Data for Natural Roll Waves

So =0.1192 hn=.ZlO inch
Rough Inlet Smooth Inlet (Correction to match rough inlet = 24 ft)
St?:ion (hmax)max max ohmax Tav O min ohmin Cav | % (hmax)max Emax | max Tiv Or Fmin ’ min [ Sav Uc
inch inch | inch | sec sec inch | inch | fps | fps inch inch | inch sec sec inch | inch | fps fps
6 .218*
12 .223%
18 .227* 5 aqd
24 .244* .315
30 .264% .305 | .097(.154°| L0279, ,,d
36 .385-1 2311 | .032 |.330 |.107 .585-1 .410 | .061 | .526| .229|.111 . 026
42 .445-1 .339 | .038 |. 364b .126].122 .023 5.98%].23°
48 5.79% | . 19e .634-1 .451 .069 | .635| .272|.105 | .023
54 .521-1 .385 | .051 .459b .191). 117 .019
60 .660-2 .493 | .071 | .742 314
66 .622-1  |.437 | .057 |.572"|.233|. 115 | .023 Pl
72 6.07° | .23°
78 .627-3 .472 | .066 |. 685b .270|.118 | .018 .732-2 .538 | .076 | .889| .422|. 099c . 024

Notes: a. Measured from pressure record (50 values)
b. Based on 2000 to 2200 peaks

c. Based on 50 values

d. Based on 20 values
Based on 100 values

f. Based on 1800 to 2400 peaks

Unless noted otherwise, average values and standard deviations were computed from about 200 values.

The integers following the (h )

max’'max
higher than the value of (h )

max ' max

values indicate the number of peaks out of 200 peaks that were
indicated.
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Table 5h Basic Data for Natural Roll Waves

S0 =0.1192 hn =.409 inch
Rough Inlet
Sta;:ion (hmax)max Fmax CThmax Tav CrT cav
inch inch inch sec sec fps

18 . 4202

24 .527% ]
30 .437% L
36 . 445% F
42 .450%

48 .454%

54 .468% . 387

60 .4772 . 387 . 140

66 . 5042 .370 . 147 2
72 8.49° ]
78 .727-1 .551 . 068 .413 .176

Notes: a. Measured from pressure record (50 values)

b. Based on 20 values

Unless noted otherwise, average values and standard deviations
were computed from about 200 values.

The integers following the (h ) values indicate the number
g g max’'max

of peaks out of 200 peaks that were higher than the

value of (hmax)max indicated.
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Table 5i Basic Data for Natural Roll Waves
So =0.1192 Rough Channel
h_=.199 inch h_ =,375 inch
n n
Station b ) E % TP
ft max max max max av max
inch inch inch sec inch
2 213%
5 220%
6 222% . 417
8 231?
10 235%
12 2432 . 426
18 252% . 417
24 2632 . 437
30 .307-2 .264 .018 . 443
36 .310-3 271 .018 . 451
42 .334-2 .278 . 024 . 488 . 461
48 .342-4 .290 . 024 . 546 . 483
54 .370-2 . 302 . 020 . 607
60 .330-10 .296 .019 . 642
66
12 .370-1 . 304 .017 . 724
78 .373-1 .310 .019 . 760
Notes: a. Point gage measurement
b. Based on 600 to 800 peaks
Unless noted otherwise, average values were computed from
about 200 values.
The integers following the (h ) values indicate the number
max' max
of peaks out of 200 peaks that were higher than the
value of (h ) indicated,
max' max

I
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To express distance along the channel and water depths in terms of

the normal depth is suggested by the small amplitude theory (equation
3.20). Both of these theories indicate that the Froude number is an
important parameter. Therefore the generality of these dimensionless
terms for describing the development of natural roll waves can be
tested by changing hrl with F held fixed. For each channel slope in
the experiments, the value of hn was changed by a factor of two while
the value of F changed slightly., Therefore if the experimental results
give unique relations for each slope, it is reasonable to assume that
these unique relations would apply at any hn for the same F and So'
The effect of changing SO with F held fixed will be considered in
Chapters VI and VII.

The results for Fmax/hn vs. L /hn are shown in figures 26-29. On
each figure the slope is fixed, and F is approximately constant. Be-
cause each graph tends to show a unique relation (except possibly
figure 28) for a two-fold change in normal depth, the use of hn to
describe the development of Ema.x is justified. It is seen that the
general shape of the relations is the same in that the initial part of
the curve is concave upwards followed by a concave downward part.

In no case did -Hmax reach a limiting value.

The dimensionless development relations for the average period
in the smooth channel are shown in figures 30-32. In the rough
channel only a few periods were measured and are not shown. The
period is seen to change very little for small £ and then it increases
almost linearly to the end of the channel. This quasi-linear increase

in period is a result of wave overtaking.
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In figures 33 and 34 the development relations for h_. and c__,
min av
respectively, are shown. The value of -Emin reached a minimum value
in the longer channel (So = ,05011 and . 08429, figure 33a and b). The
wave velocity is seen to have increased linearly although there is a

definite Froude number dependence even for the small variations of

F on each slope. The dependence of Cav/ ,/gEn on F is predictable
from the periodic permanent theory. For example, figure 6 shows that
c/-\/ghn =1 + F for the limiting case of vanishing wave length.
In figure 35 the development curves for the standard deviation of
h are shown. In contrasttoh , attained practically
max max hmax
a constant value near the end of the channel, On the other hand the

standard deviation of the period, shown in figure 36, increased almost

linearly as the average period also did.

4. Frequency Distributions and Wave Shape

Typical frequency distributions of the four measured properties

h T hmin and c are shown in figures 37-40 for various stations

max’
in one run., These are plotted on arithmetic-probability paper which
is designed such that a frequency distribution with a normal (Gaussian)
distribution plots as a stra.ight' line. The properties hmax and c are
well represented by a normal distribution, while the period approxi-
mately follows a normal distribution. The minimum depth shows a
definite departure from the Gaussian law at the low values.

Figure 41 is a typical pressure record in a region where the waves

were small, The variety of wave shapes and lengths is seen. In fig-

ure 14 the shape of shock waves is seen.
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Fig. 4L

Typical pressure and wire gage record for small amplitude
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V-D PERIODIC PERMANENT ROLL WAVES

1, 130 ft Channel

As mentioned in Section IV-B there was one periodic permanent
wave run in the 130-ft channel., The conditions for this run were:
T = 3,00 sec, S0 =,01942, hn =,780 in., and ¢ =5.70 fps. The
measured wave profile and velocity are shown in figure 43 along with
the theoretical solution for the profile for F = 2.65.and a dimensionless
period (T') of 1.30. The wave profile agrees very closely with the
theoretical solution, and the measured velocity is slightly higher than
given by the theory. Figure 42 shows a definition sketch for wave
profiles. The length of the shock front (\ - (x, )max) was not measured
in the run in the 130-ft channel, and was assumed to be negligible as

shown in figure 43.

2. Steep Channel

Wave shapes and velocities for periodic permanent waves in the
steep channel were measured by methods explained in Chapter IV.
Table 6 contains the F and T' values for each run, and the results
for hmax’ hmin? and c¢ in dimensionless form. Because these three
properties are of prime interest, they are plotted in figure 44 along
with the theoretical relations. In plotting the experimental points on
figure 44, the same symbol was used for all data obtained for a given.
slope. However for all.slopes; except .05011, there was one run at a
higher normal depth, and thus a higher F, than the other runs at the

same slope. In most casesdata for this one runare mot consistent with that of

other runs, which can be attributed to the slightly higher value of F.
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Table 6
Basic Data for Periodic Permanent Roll Waves
So Channel hn ¥ T C/@ hma.x/hmin max/hn min/hn
inch

.05011 Smooth .314 3.71 1. 08 5.18 1.72 1.30 .76
. 05011 Smooth .314 3.71 1. 64 5.27 2.15 1.46 .68
.05011 Smooth .314 3.71 2. 14 5.36 2. 60 1. 63 .63
. 08429 Smooth .208 4.63 1. 63 6. 46 2:35 1. 54 .66
. 08429 Smooth .314 4. 96 2.50 7.01 - 1.91 -

. 08429 Smooth . 208 4.63 2.89 6.79 3.58 2.00 .56
. 08429 Smooth .208 4.63 4. 07 s 15 4.37 2..35 .54
. 08429 Smooth .208 4.63 4.53 7.24 4. 66 2.49 .53
. 1192 Smooth .210 5. 60 2.25 7.74 3.42 2.78 . 52
. 1192 Smooth .210 5.60 355 8.24 4.96 2.31 . 47
.1192 Smooth . 308% 5.90% | 4.25 8. 82 5. 49 2.65 .44
.1192 Smooth .210 5. 60 5.19 8.76 6. 38 2.82 .45
.1192 Rough . 199 3.74 1.98 5.43 1.91 1. 34 .70
. 1192 Rough . 199 3.74 3.73 5.73 2.30 1. 54 . 67
. 1192 Rough . 375 4,04 4,19 6.14 2.05 1.55 il
. 1192 Rough . 199 3.74 5. 64 5.95 2.72 1.68 .62

*Normal depth and Froude Number interpolated from measured values at this slope.

60T
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This slight discrepancy should be considered when examining figure 44.
The values of F used for the theoretical relations correspond to the F
for the majority of the data points at a given slope as can be seen from
table 6. Note that the rough channel (S0 =.1192, hn =,199 in.) and
the smooth channel (So =,05011, hn = .314 in.) had an F of about 3. 7.
It is seen that for all three properties there is a consistent experi-
mental relation for each F which is similar to the theoretical relation.
For hmin and c the experimental points are slightly above the theo-
retical curve. For hmax the measurements are considerably lower
than the theoretical values and for a smooth channel this discrepancy
increases as the Froude number increases. The rough channel
relation is even lower than the smooth channel relation for the same F.
In table 7 all of the data obtained on wave shape are presented.
On figure 45 a few of these data are plotted which serve to show the
significant trends. Of particular interest is the length of the shock
front which was assumed to be negligible in the periodic permanent

wave theory.

V-E OBSERVATIONS ON INDIVIDUAL WAVES

All of the data on natural roll waves presented above have been
obtained by measuring properties at one station, then repeating the
measurements at other stations at a later time. These measurements
were combined to give the behavior of a particular property as a func-
tion of distance along the channel. To get some information on how the
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