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ABSTRACT

This study is concerned with some of the properties of roll waves

that develop naturally from a turbulent uniform flow in a wide rectangu-

lar channel on a constant steep slope. The wave properties considered

were depth at the wave crest, depth at the wave trough, wave period,

and wave velocity. The primary focus was on the mean values and

standard deviations of the crest depths and wave periods at a given

station and how these quantities varied with distance along the channel.

The wave properties were measured in a laboratory channel in

which roll waves developed naturally from a uniform flow. The Froude

number F (F =u /.)gh ,u =normal velocity, h =normal depth,
n n n n

g =acceleration of gravity) ranged from 3.4 to 6.0 for channel slopes

S of. 05 and. 12 respectively. In the initial phase of their development
o

the roll waves appeared as small amplitude waves with a continuous

water surface profile. These small amplitude waves subsequently

developed into large amplitude shock waves. Shock waves were found

to overtake and combine with other shock waves with the result that the

crest depth of the combined wave was larger than the crest depths before

the overtake. Once roll waves began to develop, the mean value of the

crest depths h increased with distance. Once the shock waves
max

began to overtake, the mean wave period T increased approximately
av

linearly with distance.

For a given Froude number and channel slope the observed quan­

tities h /h, T I (T I =S T .fiJh), and the standard deviations of
max n 0 av n
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11 /h and T I, could be expres sed as unique functions of -t /h
max n n

(.t =distance from beginning of channel) for the two -fold change in hn

occurring in the observed flows. A given value of Ii /h occurred
max n

at smaller values of -t/h as the Froude number was increased. For
n

a given value of 11 !h the growth rate ofi /a-t of the shock waves
max n max

increased as the Froude number was increased.

A laboratory channel was also used to measure the wave properties

of periodic permanent roll waves. For a given Froude number and

channel slope the h /h vs. T' relation did not agree with a theory
max n

in which the weight of the shock front was neglected. After the theory

was modified to include this weight, the observed values of h /h
max n

were within an average of 6.5 percent of the predicted values, and the

maximum discrepancy was 13.5 percent.

For 11 /h sufficiently large (fi /h > approximately L 5)
max n max n

it was found that the 11 /h vs. T' relation for natural roll waves
max n

was practically identical to the h /h vs. T' relation for periodic
max n

permanent roll waves at the same Froude number and slope. As a

result of this correspondence between periodic and natural roll waves,

the growth rate afi /o-t of shock waves was predicted to depend on
max

the channel slope, and this slope dependence was observed in the

exp eriments.
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CHAPTER I

INTRODUCTION

When water flows down a long and sufficiently steep open channel,

it is found that the depth of flow is not uniforIn as it would be if the

same channel had a very sInall slope. The flow is characterized by

a series of hydraulic bores that extend across the width of the channel

and propagate downstreaIn. Across these bores or shocks the depth

of flow varies abruptly. Between successive bores the depth of flow

varies gradually. Waves of this kind are terIned roll waves and flows

with such waves are called slug flows by SaIne workers. Figure 1

shows a typical roll wave train.

In 1904 Cornish (l)* observed and elegantly described roll waves

in prisInatic or artificial channels which is the type of channel in

which they are usually observed. However they have also been observed

in a super glacial stream (2) which indicates that roll waves are not

restricted to artificial channels.

The maxiInum depth of flow in a roll wave train InU~t neces sarily

be greater than the normal or undisturbed depth. Thus a prismatic

channel designed to convey a discharge at norInal depth, Inay not be

capable of conveying this saIne discharge with roll waves present

without SaIne of the water leaving the confines of the channel. A

dramatic example of this was observed by HolInes (3) in a channel

*Numbers in parentheses refer to publications listed in the
Bibliography.
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Negative No. 7804

Fig. 1. View of roll waves in Santa Anita Wash,
Arcadia, California, about one mile down­
stream of inlet, discharge about 195 cfs
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that had water overtopping the 8 ft side walls when the discharge was

estimated to be less than 25 per cent of the design discharge. Thus

the practical need for understanding the mechanics of roll waves is

clear.

In general one would like to be able to predict whether a channel

will exhibit roll waves for any particular discharge. Furthermore,

if roll waves are to be present, it is desirable to know where they will

start, and how high they will be at any section of the channel. From.

the present knowledge (1967) of roll waves, one can determine the

necessary conditions for roll waves to exist. However the sufficient

conditions (the length of channel), and the dimensions of a developing

roll wave train have not been defined.

The purpose of this investigation is to describe the geometric

properties of roll wave trains that develop naturally from a turbulent

flow at normal depth in a wide rectangular channel on a constant slope.

This was done by means of experiments in a steep laboratory channel

where roll waves formed naturally. Some analytical work also aided

in the understanding of the basic phenomenon.

In Chapter II the previous work on roll waves is summarized.

In Chapter III theories for small amplitude perturbations on a uniform

flow, and large amplitude periodic permanent roll wave trains are

presented. Chapter IV describes the laboratory experiments per­

formed, the results of which are in Chapter V. In Chapter VI these

results are discussed and compared with theory where possible.
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The large amplitude theory is examined closely in Chapter VII

and modified to substantially improve the agreement between theory

and experiment. In Chapter VIII methods for utilizing the results

of this study to determine maximum depths for roll wave trains are

presented. In Chapter IX the primary results and conclusions are

stated.
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CHAPTER II

PREVIOUS STUDIES

This chapter summarizes the significant analytical and experi-

mental work that has been done on roll waves. First, the basic

differential equations that are used in all of the analytical studies to

be discussed will be considered.

II-A BASIC EQUATIONS

The continuity equation for a flow of an incompressible fluid in

an open channel is,

(2. l)

where A = A(x, t) is the cross -sectional area of the fluid, u = u(x, t) is

the average velocity (Q/ A, where Q = Q(x, t) is the discharge in volume

of fluid per unit of tiITle) over A, x is the coordinate along the channel,

t is tiITle, and the subscripts x and t denote partial derivatives with

respect to these variables.

Flows with roll waves are characterized by typical horizontal

diITlensions (wave lengths) that are large cOITlpared to typical vertical

diITlensions (water depths), so that the well-known shallow-water

equations are valid. For a turbulent flow in an inclined channel, the

integrated (over the cross-section A) forITl of the ITlOITlentUITl equation

is,

u 1 'To
ut+a. uu +(l-a.)AAt+gh =gS ---x x 0 p r (2.2)
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In this equation:

S :::: sin e, e :::: angle of inclination of channel;
o

h :::: h(x, t) :::: depth of flow in eros s section;

g :::: gravitational constant (32.16 ft/sec 2
);

a :::: --4- J u 2 dA :::: velocity distribution coefficient;
Au A p

u :::: U (x, y, z, t) :::: fluid velocity at the point (y, z) in the
p p

cross section A;

p :::: mas s density of fluid;

,. 0 =: "0 (x, t) :::: shear stress in the x-direction averaged over

the channel walls and bottom; and

(2. 3)

r :::: r(x, t) :::: A/(wetted perimeter of channel) :::: hydraulic radius.

Equation 2. 2 can be derived from the Navier -Stokes equations by

assuming that the predominate motion is in the x-direction, and thus

for example the term v
t

is small compared to Ute Equation 2.2

implies that the pressure distribution in a cross section is hydrostatic.

A particularly lucid derivation of this equation has been given by

Keulegan and Patterson (4).

In all of the studies concerning roll waves, ,. has been evaluated
o

by using a relation derived from uniform flow considerations. A

uniform flow is one in which all partial derivati:ves in the x-direction

are zero, 0 10 x == 0, and by definition the depth of flow for a uniform

flow is the normal depth, h . For example, from the Chezy equation
n

there results,

,. :::: p f u 2 18
o n (2.4)
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where u is the average velocity (0/ A) for uniform flow, and f is the
n

Darcy- Weisbach friction factor. It has been assumed that this same

relation is valid for unsteady, gradually varied flow, where u isn

replaced by u. For uniform flows f varies with the Reynolds number

and/or the relative roughness. In some roll wave studies it has been

assumed that f does not vary in the x-direction and is equal to its

value for uniform flow. However in cases where f has not been held

fixed, its variation in the x-direction has been assumed to have the

same dependence on the Reynolds number (smooth channel) or relative

roughness (rough channel) as it does for uniform flows.

II-B CRITERIA FOR UNSTABLE FLOW

The majority of the literature on roll waves is concerned with

the determination of the necessary conditions under which roll waves

can exist. The approach has been to investigate the stability of a

uniform flow on a constant slope by imposing small free -surface

perturbations on it. If the se perturbations increase in amplitude as

time increases, the flow is said to be unstable. Presumably these

small amplifying perturbations would eventually result in the clearly

visible large amplitude roll waves. (Figure 1)

Jeffreys (5) considered a wide rectangular channel. uniform

velocity distribution (a = 1), and an unvarying friction factor (f). For

this case, the condition for an unstable flow was that the Froude

number F, (F =u / ...;gh ,h =normal depth) be greater than 2.n n n
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Since Jeffreys, many others (6,7,8,9) have derived criteria of

var ying degrees of generality. Dressler and Pohle (7) considered

a wide rectangular channel, a = I, and a general power law resistance

relation (r = const. un/h
m

). Craya (6) considered a channel of
o

arbitrary shape, a = 1, and a power law resistance. Iwasa (8)

developed a general expression for the critical Froude number (Fer)

applicable for arbitrary channel shape, friction law, and value of a.

Using Iwasa I s result for a rectangular channel of any width, Koloseus

(9) has evaluated values of F by using the logarithmic resistance law
cr

for both a smooth and a rough boundary.

From all of these studies there results F values which incr

general depend on the channel shape, frictional resistance law, and

the value of a. The value of F is 2.0 for a wide rectangular channel
cr

with an unvarying f. If f is evaluated from the logarithmic resistance

law, F for a wide rectangular channel (rough or smooth) depends
cr

slightly on f, but is about 1. 6 for f =.02. F is increased as a is
cr

increased, and also increases as the rectangular channel becomes

narrower. In general, channels of other shapes, such as circular or

triangular, have a higher F· than a rectangular channel.
cr

A flow with a value of F considerably higher than F may not
cr

exhibit visible roll waves. This fact was noted by Montouri (10) in

his investigation of field data collected in Europe and Russia. This

led him to develop a criterion for predicting formation of roll waves

(but not their dimensions), involving not only the value of F , butcr

also the length of the channel. From this criterion, one finds that
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as the discharge and hence normal depth increases, the length required

for visible roll waves to develop also increases. This basic observa-

tion is most important in studying the development of roll waves.

II-C LARGE AMPLITUDE WAVE STUDIES

Prior to 1940 Thomas conducted experiments on artificially

produced periodic permanent roll waves (to be considered in Chapter

III) in a laboratory channel. This study is referred to in a paper by

Thomas (11) but personal communication with him revealed that his

re suIts were never published and have since been lost. However, he

did state that his experiments gave a satisfactory check on the

theoretical analysis of periodic permanent waves.

In 1954 laboratory work on roll waves was done at Kyoto Uni-

versity in a smooth channel 36 feet long. This work was referred to

in a later paper by Ishihara et al. (12). By contacting personnel at

Kyoto, it was found that the data taken were not sufficient to describe

the growth of roll waves as a function of the distance along the

channel. In fact for many runs depths were not measured.

In a recent paper (1965), Ghambarian (13) discusses some

laborator y work that has been done in the Armenian Soviet Socialist

Republic. The channel slope varied from S =.10 to .86, and the
o

length from 10 m to 60 m. Roll waves developed naturally and

measurements of maximum depth, wave length, wave velocity, and

wave period were taken at various stations along the channel. Fre-

quency distributions of these quantities were measured as a function

of distance along the channel.
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Unfortunately the results of maximum depth vs. distance for all

slopes are compressed into one small graph and only the experimental

relations are shown without the numerical data that were used to

derive these relations. However in the paper for S =. 10 by
o

Ghambarian and Mayilian (14) the experimental points were taken from

a graph. These data, along with some extracted from the 1965 paper

will be presented in Chapter V. More informati.on concerning these

experiments will be presented also.

In 1965 the Los Angeles County Flood Control District conducted

a field study in Santa Anita Wash located in Arcadia, California. Data

on the roll waves that developed were taken and will be presented in

Chapter V along with a description of the experiments.

The first attempt to describe large amplitude roll waves

analytically was by Thomas (11). He considered a periodic train of

waves of constant shape and velocity (permanent). By piecing together

two gradually varied water-surface profiles for unsteady flow, he

managed to construct a wave profile similar to observed roll waves.

Dressler (15), using Thomas's basic ideas, was able to find closed

form solutions for a wide rectangular channel with an unvar ying

friction factor. In Chapter III the procedure for constructing these

periodic permanent solutions will be given.
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II-D FRICTION FACTORS IN UNSTABLE FLOWS

When the Froude number for a flow is greater than F ,the flow
cr

is said to be unstable. Some investigators have found that in unstable

flows the friction factor measured in a reach of uniform flow is a

function of the Froude number as well as the relative roughnes s (rough

boundary) or Reynolds number (smooth boundary). Koloseus (16)

found this Froude number effect in a rough channel, and Rouse (17)

found it in a smooth channel.

In the course of the present investigation friction factors were

measured in two smooth channels: a 130 ft tiltable channel, and a

steep aluminum channel. The Froude number effect noted above was

not detected in either of these channels. These results for the 130 ft

channel are included in a published discussion of Rouse r s paper (17),

which is in Appendix 1. The hydraulic characteristics of the steep

aluminum channel are given in Chapter V.

II-E SUMMARY

After presenting the basic equations used for roll wave investi-

gations, the significant studies that have been done on roll waves were

discussed. The criterion for unstable flow can be expressed by a

critical Froude number which in general depends on the channel shape,

frictional resistance law, and the velocity distribution in a eros s

section. Some analytical work on non-linear waves has been done for

a periodic permanent wave train. The only available laboratory data

on roll wave development were discussed briefly and will be presented

in Chapter V, along with some available field data.
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CHAPTER III

ANALYTICAL INVESTIGATION

The laboratory results to be presented in Chapter V show that

the geometric properties of roll waves (i. e. maximum and minimum

depth, wave length, etc.) are not only functions of distance along the

channel, but vary from one wave to another at a fixed station. This

was observed both for the small amplitude waves with a continuous

water surface (which occurred downstream of the uniform £low and

upstream of the shock waves), and the large amplitude shock waves.

Thus a complete theory for describing natural roll waves must be able

to predict the frequency distributions of the geometric properties as

a function of distance. Needless to say, no such theory exists.

In this chapter two theories are presented for periodic wave

trains; one for small amplitude sinusoidal waves, and the other for

large amplitude permanent waves with shocks. Because of the

periodicity assumption, it is clear from the above description that

these theories do not directly relate to natural roll waves. However

it will be shown in Chapter VII that the large amplitude theory is at

least indirectly related to natural roll waves in terms of average

values of the geometric properties. Periodic permanent waves were

produced in the laboratory channel and in Chapter VI their character­

istics will be compared with the theory. Also in Chapter VI it will

be shown that some trends derived from the small amplitude theory

agree with the observations on the small amplitude natural waves.
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III-A SMALL AMPliTUDE THEOR Y

1. Statement and Solution of Problem

Jeffreys (5) imposed a small sinusoidal perturbation on a uniform

flow in a wide rectangular channel with an unvarying friction factor.

The result was that for a value of F of two the disturbance was

neutrally stable, or its amplitude neither increased or decreased with

time. In fact all of the work on stability criteria discussed in

Chapter II was concerned with finding this neutrally stable condition.

The object of this investigation, as stated above, is to study

the development of natural roll wave trains from a uniform flow. This

development only occurs if the uniform flow is unstable and therefore

the growth rates of small perturbations for Froude numbers above 2.0

are of interest.

For a wide rectangular channel (r =h), a. = 1, and the simplifying

assumptions outlined in Chapter II, equations 2.1 and 2.2 become,

u + uu + gh =gS (1 - u Z /F2 gh),
t x x 0

after using the relation,

f = 8S /Fz
a

(3. 1)

(3. 2)

(3.3)

which results from assuming that f does not vary from its value at

uniform flow. To render these equations dimensionless the following

dimensionless quantities are introduced:



U = u/u .
n

H =h/h , h = normal depth; and
n n

·t' =u t/"A, u = normal velocity (q/h );
n n n

Xl =X/A,

14

A .= wave length; (3.4)

(3.5)

(3.6)

(3. 7)

Equations 3. 1 and 3.2 can now be written as,

H , + (UH) , = 0
t x

UtI + UUx' + H .lF2 = (S /F2 ) (A/h )(1 - U2/H)x 0 n

where F is the Froude number for uniform flow (F =u /./ih ).n n

(3. 8)

(3. 9)

Equations 3.8 and 3.9 are now linearized by assuming that the

deviations from the undisturbed or uniform flow condition are small.

This assumption is expressed as,

U = 1 + UI (3. 10)

(3. 11)

where UI and 11 are the perturbation quantities which are small com-

pared to unity. It is further assumed that the derivatives of V' and 11

are also small compared to unity. Substituting equations 3. 10 and

3. 11 into 3.8 and 3.9, and neglecting products of any two small terms

(Le. U'U'xl' U''Tk I' 11V'x" etc.), yields two linear equations,

Tl. +.,., + U' , = 0
.'t' "x' x

VitI + U'
X'

+ 11 .lF2 = (S /F2 ) (A/h) (11- 2U')
X 0 n

(3. 12)

(3. 13)
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The quantity U' is then eliminated from equations 3.12 and 3.13 to give

a second order linear partial differential equation for Tl ,

(l-1/F2 )Tl , t+ 2 Tl 't,+Tlt't'+(S /Fz)()Jh )(3Tl ,+2Tl
t

,) ==0 (3.14)xx x 0 n x

A sinusoidal perturbation can be expressed as the real part of,

Tl == Tl 0 exp [i 2rr (x' -Ct') ]

which is equivalent to,

2rr C. t' [ ]Tl == Tlo e 1 exp i 2rr (x r - Crt')

where:

Tl =the amplitude at t' =0;o

C =C +iC. dimensionless complex velocity;
r 1

(3.15)

(3. 16)

C =dimensionless phase velocity of the perturbation
r

Tl; and

C. =dimensionless number pertaining to the growth rate.
1

To convert the amplitude of the perturbation (T) lrrCit') from a function
o

of time to a function of distance, the expression,

t = ct (3. 17)

is used, where t is the dimensional distance over which the wave

train travels in the time t, and c is the dimensional phase velocity.

Using the expression,

C =c/ur n
(3. 18)

and equations 3.5 and 3.17» an expression for t' can be written as,
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t l = (h IC A) (t/h )n r n

Then equation 3.16 can be expressed as,

where Y is defined by,

Y == (S I F 2
) (). Ih ).

o n

(3. 19)

(3. 20)

(3. 21)

Y is a dimensionless wave length, and the term (2rrC./C Y) will be
1 r

referred to as the amplification factor.

The problem is reduced to finding a solution for the amplifica-

tion factor and C • When these two quantities are known, equation
r

3.20 shows that the behavior of Tl will be known. To obtain the

expressions involving C. and C , equation 3. 15 is substituted into
1 r

equation 3. 14 which results in,

2rr [2C - C2 - (1 - I/F2)] +iY(3-2C) = 0

Separating real and imaginary parts of this equation leads to,

rr [ 2 C r + C~ C~ - (1 - 1 I Fa) ] + Ci Y =0

4rr C. (1 - C ) + Y (3 - 2C ) =O.
1 r r

These two equations give,

C = (3Y + 4rrC.)/(2Y + 4rrC.)
r 1 1

F = 11./1 - (2C + C~ + C2 + C. Y I rr)
r t r t

(3. 22)

(3.23)

(3. 24)

(3.25)

(3. 26)
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These expressions show that the quantities C and C. are functions of
r 1

Y and F, and thus the amplification factor can also be expre s sed in

terms of Y and F. The functional relationships for the amplification

factor and the phase velocity were determined numerically for values

of F of 2.5,3.5, and 5.0, and are shown in figures 2 and 3.

The neutrally stable solution occurs when the amplitude does not

change with time which requires the value of C. to vanish. Then from
1

equations 3.25 and 3.26 there results,

C = 3/2
r

F=2

which was the solution obtained by Jeffreys (5).

(3.27)

(3.28)

For small values of Y (Y« 1) equations 3.23 and 3.24 become,

2C +C::: - C2 - (1-1/F2) =0
"r 1 r

C. (1 - C ) = 0
1 r

(3.29)

(3.30)

Equation 3.30 requires that C equal unity, or that C. is of the same
r 1

order of magnitude as Y. If C is unity, equation 3.29 shows that C.
r 1

must be imaginary which it is not. Therefore C. is also small, and
1

equation 3.29 is further simplified to,

C2
- 2C + (1 - l/F2 ) = 0

r r

from which there results,

C
r

= 1 + 1 IF

(3.31)

(3. 32)
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Then equation 3.24 yields,

2TT C. 1C Y = F ( 112 F - 1) 1(1 + F)
1 r

(3. 33)

This asymptotic solution for the amplification factor is shown on

figure 2.

F'or large values of Y (Y» 1) equations 3.23 and 3.24 become,

".[2C - C2 - (1 - l/F2)] + C.Y = 0
r r . 1

and

Y (3 - 2C ) = 0
r

from whic'h results,

C =3/2
r

and

This aSyrrlptotic solution is shown on figure 2.

2. Discussion of Solutio!}

(3.34)

(3.35)

(3.36)

(3.37)

The solution for 11 is given by equation 3.20 where the

amplification factor and phase velocity are shown in figures 2 and 3,

respectively. At a fixed time t ~ 0, the solution describes a train of

sinusoidally shaped waves, each wave having the same amplitude,

phase velocity, and wave length. Furthermore this train of waves

extends indefinitely along the channel because x was not restricted in
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any way. As t increases, the amplitude of each wave increases ex-

ponentially (if F > 2), but according to equation 3.20 the wave shape

and phase velocity remain the same.

Amplitudes of natural roll waves increase as the waves travel

along the channel, and ultimately shock waves are formed. Therefore

it is clear that at a fixed time the amplitudes of natural roll waves in-

crease in the downstream direction, whereas in the theory it was

assumed that all waves had the same amplitude at a fixed time. It is

likely that a theory in which the amplitudes of the waves increased in

the x-direction (at any given time) would predict different growth rates

than the periodic theory considered here.

Boundar y conditions other than the initial conditions (periodic in

x)used here would be required to obtain a better model for natural roll

waves, although it is not obvious what these might be. In general this

would lead to a more difficult problem than was considered above,

because of the additional dependence on x. However the above theory

is useful for obtaining at least qualitative results concerning the

effect of wave length and Froude number on the growth rate.

The growth rate will be defined as the rate of increase of the

maximum depth (or the amplitude) with respect to distance along the

channel. From equation 3.20 the growth rate becomes.

011 /0 (-t/h ) = 1l (2nC./ C Y}(S /F2 )max n max 1 r a
(3.38)
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where 'l"1 is the amplitude,
"max

'1"\ = 'l"1 exp [(27rC./C Y)(S IF2 )(-t/h )J
' I max ' I 0 1 ron (3.39)

which varies with -t • Equation 3.3 shows that the term S IF2 is
o

related to the friction factor which varies very little with slope or

Froude number in a given channel. Therefore it suffice s to examine

the amplification factor to determine the effect of wave length and

Froude number on the growth rate.

From figure 2 the growth rate is seen to increase as the wave

length decreases and essentially to attain its maximum value at values

of Y such that the shallow water theory is still valid. For example

with F = 5 the maximum amplification factor is reached at about

Y = .1, so that the value of J..../h is about 50 if the slope is .05 which
n

is a practical situation. The occurrence of a wave length with a

maximum growth rate is usually interpreted to mean that this will be

the observed wave length in a situation where disturbance s of all wave

lengths are amplifying. In this case one would expect to observe any

wave length corresponding to the small values of Y where the curves

of figure 2 are almost horizontal.

Figure 2 shows that the growth rate increases as the Froude

number increases. Transferring this result to natural roll waves, it

is not unreasonable to expect that roll waves will appear at increasingly

shorter distances from the beginning of the channel as the Froude

number is increased, providing the initial disturbances are of the

same size.
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By considering a problem where Tl was prescribed as a function

of time at the entrance to a channel, Lighthill and Whitham (18) found

the solution valid near the wave front of the disturbance initiated at

the entrance. The amplitude of their solution is precisely the same

as the amplitude of the above solution for small values of Y (equations

3.33 and 3.39). Although the full significance of this is not clear, it

presumably serves as a check on the present work.

Ill-B. LARGE AMPLITUDE PERIODIC PERMANENT ROLL WAVE
THEORY

The method of solution presented here is essentially that used

by Dressler (15) except that the introduction of the nor"ffial depth into

the theory is new.

1. Statement and Solution of Problem

A wide rectangular channel with a friction factor that does not

vary from its value at uniform flow is considered (equation 3.2). A

permanent wave is one whose shape and velocity does not change with

ti"ffie or position. Thus for a permanent wave the t variable can be

eliminated by introducing a coordinate system that moves with the

wave at the velocity of the wave. Such a coordinate for a wave travel-

ing in the + x direction is X =x - ct, where c is the constant wave

velocity. Thus for a permanent wave, u(x, t) = u(X). and h(x, t) = h(X).

The derivatives are transformed by,

a/at =-c a/ax, a/ax =a/ax. (3.40)
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Equations 3. land 3.2 reduce to two ordinary differential

equations in u and h. Combining to eliminate u gives,

where

K ::: (c - u) h ::: constant

and

This definition of h will prove to be very convenient.
c

(3.41)

(3.42)

(3. 43)

The shock condition which relates h to h . is now con-
max mIn

sidered (figure 4). It is assumed that the thickness of the shock is

sufficiently small so that the x-component of its weight is small com-

pared to the pressure forces, the pressure distribution is

hydrostatic, and the velocity distribution is uniform (a = 1). These

assumptions will be discussed in Chapter VII, with the .aid of the

experimental results. Equating the pressure forces across the shock

to the net momentum flux through the shock results in,

C ::: U .
mIn

/ hmax hmax + hmin
+..j'g-h-.- 2

mm
(3.44 )

This is a familiar form for wave velocities of shallow water waves.

This can also be written,

h /h.
max mIn

_ / (c-u.)2
::: 1 / 2 VI + 8 mm - 1 ] .L gh .mIn

(3.45)
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Fig. 5. Periodic permanent roll wave water-sur­
face profile with point of inflection
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Setting c equal to zero in equation 3.45 gives the expression commonly

used for a hydraulic jump on a horizontal channel. Thus the shock

considered here can be regarded as a moving hydraulic jump.

Using the expression for K and the definition of h , equation
c

3.45 can be written,

h 1h . = 112 [./1 + 8 (h 1h . )3 - 1 ] .max mln c mln
(3.46)

From equation 3.46 it is seen that when h Ih . equals unity, the
c mln

value of h Ih. is also unity. Furthermore if h is less than
max min c

h . , h is required to be less than h . which is meaningless ..
mln max min

Therefore,

h /h . ~ 1
c mln

Solving equation 3.46 for h Ih gives,
max c

h Ih = 112 [./(h . Ih )2 + 8 h Ih .max c mln c c min

from which it is clear that,

h Ih ~ 1
max c

(3.47)

-h . Ih ] (3.48)min c

(3.49)

Therefore h is in the closed interval from h . to h or,
c mln max

h . 5;h 5;h
min c max

(3.50)

Now if the wave train is assumed periodic, there is only one

value of h . and h for all waves. Equation 3.50 insures that h
min max c

must exist at some section between successive shocks on the gradually

varying water surface. However equation 3.41 requires the value of
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dh/dx to approach infinity at h =h unless the numerator vanishes at
c

h =h . A periodic solution with dh/ dx infinite at h would appear as
c c

in figure 5, where h is a point of inflection. However a point of
c

inflection requires dZh/ dXz to vanish at h =h , which Dressler showed
c

to be impossible.

The correct solution is one in which the numerator of equation

3.41 vanishes at h =h , which results in a smooth water surface,
c

concave upwards. Setting the numerator of equation 3.41 to. zero for

h = h , and using equation 3.43 to eliminate K, results in an expression
c

for c,

c/../g'fC =1 + F,c

Both the numerator and denominator of equation 3.41 are cubic

(3.51)

algebraic expressions with h as one of the three roots. This common
c

root can be factored out and equation 3.41 can be written as,

(h*-h*) (h* -h"~)

dh/dX=S a b
o h*z + h* + 1

where an asterisk denotes division by h. The dimensionless
c

(3. 52)

quantities h* and h* are the other two roots, besides h (or h* = 1),
abc c

of the numerator. By equating the numerator of equation 3.52 to that

of equation 3.41, and using equation 3.43 to eliminate K and equation

3.51 to evaluate c, there results,

h!t,b = (1/2F2
) [1 + 2F ± ./1 + 4F ] (3.53)

where the positive square root is used for h*, and the negative square
a

root for ht, so that h~ > ht .
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Equation 3.52 can be integrated, and with X =0 at h :: h there
c

results,

h*-'h*
S x:« = (h* - I) + A In a.

o I - h~
a

h*-ht
B In--­

l-ht
(3.54)

l+h>:<+h,;c2 I + h:(c + h*2
where A a a

B
b b= h* - h* =

h: - ~a b

and X* =X!hc

This relation between X* and h* has the general shape shown in

(3. 55)

figure 4. Evaluating equation 3.54 at h* and h*. gives an
max mln

expression involving the wave length,

(3. 56)

where
h* -h*
max a

K 1 =In h*. -h>:<
mln a.

h* -hb*max
K 2 =In h>:<. -h*

mln b
(3.57)

and A* = A/h •
c

In a particular probl em the channel slope, S , and the Froude
o

number at uniform flow, F, will be known. Then the relationship

between X:« and h* can be found from equation 3.54. However to

determine h>:C ,equation 3.56 shows that S A* and h*. must also
max 0 mln

be known, which requires two additional relations involving A>:<,

h* ,and h*. . The shock condition, equation 3.46, provides a
max mln

relation between the quantity h* Ih*. and h*. • Therefore a unique
max mln mln

solution exists between h* and X* (including h* and h*. ), for a
max min
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given Sand F, if the value of S A* is also fixed. The above solution
o 0

is essentially the fonn of the solution that Dressler (15) presented.

The above solution is in terms of the depth h which can not be
c

found from the values of Sand F (assumed to be given). Therefore
o

it is de sir able to have the solution in terms of s orne known depth. The

most significant depth is the undisturbed or normal depth (h). There­
n

fore an expression for h* :::: h Ih will be found. With the value of h*
nne n

known, the solution can be expres sed in terms of h .
n

From the definition of the discharge per unit width and equation

3.42,

q(X) _ uh :::: ch(X) - K (3.58)

The average discharge over one wave length, and thus the average

discharge over all waves, is then,

q :::: l!A J q(X)dX
av A

1£ the average depth is defined as,

=ciA. Jh(X)dX - K
A.

(3.59)

h = 1I A. J h (X) dX
av A.

then equation 3; 59 is:,

q :::: ch - K
av av

(3.60)

(3.61)

The normal depth depends only on the average discharge and Froude

number as can be seen from,

h - q lu =q I(F~)n av n av n
(3.62)
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An expres sion for h'~ is found by eliIninating q between equations
n av

3.61 and 3.62, using equation 3.51 to evaluate c, and using equation

3.43 to evaluate K. The result is,

h ,;::3 I 2 =[( 1 + F) h * - 1] IF
n av

(3.63)

The final step is to find h*. First equation 3.60 is rewritten,
av

h>:c:
h* = 1/)...* S max h*(X*)dX~<

av h* .
mIn

or when equation 3.52 is used to evaluate dX*,

This can als 0 be written as ,

(3.64)

(3.65)

h*
S )...* h* = S. max h*d [h* +;A In(h*-h~<)-Bln (h*-h':<)]" .(3.66)

o av h* . ., a b
mIn

which is in a convenient form for integration by parts. Performing

this integration, and using equation 3.56 to evaluate S A*, leads to,
o

lj2(h>:<2 - h*2. ) + (A-B) (h* -h*.) + Ah*K1 - Bh.*K:a
max m In max mIn a ·0

h::< = .. (h* - h*. ) + AK
1

- BK:a
av max mIn

(3.67)

From the above analysis it can be shown that for a given value of

F and S A/h , the wave shape and velocity are uniquely determined.
on·

Equations 3.63 and 3.67 show that,

h* =£1 (F, h* , h*. )n max mIn
(3.68)
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where f1 is some function. From equation 3.56,

S A/h = f 2 (F. h* ,h*.)o c max mln

Dividing equation 3.69 by 3.68 gives,

S A/h = fa (F, h* , h*. )o n max mln

(3.69)

(3.70)

The shock condition, equation 3.46, gives a relation between h':<
max

and h*. ,
mln

h* = f (h* )max 4 min (3.71)

For given values of F and S A/h ,h* and h*. can in principle be
o n max mln

found from the last two equations. Equation 3.68 is then used to

convert these to h Ih and h . Ih. Then the value of h* from
max n mln n n

equation 3.68 is applied to equation 3.51 to get cl~
n

it is correct to write,

Therefore

h Ih =f5 (F, S A/h), h ./h =f
6

(F, S A/h),max non mln non

c/ /i,h =f
7

(F, S A/h )non

The wave shape can be expressed as, (equation 3.54),

Dividing this by equation 3.68 gives,

h/h = f
9

(F, h* ,h*., S X/h )
n max mln 0 n

(3.72)

(3. 73)

(3.74)



32

But equations 3. 70 and 3.71 show that h* and h*. are functions
TIlax TIlln

of F and 8 'A/h. Thus equation 3.74 becoTIles,
o n

h/h =flO (F, 8 'A/h , 8 X/h )non 0 n

which is equivalent to,

h/h =f ll (X/'A, F, 8 'A/h )non

(3.75)

(3.76)

Therefore the wave shape (equation 3.76) and velocity (equation 3.72)

are unique functions of F and 8 'A/h. The wave period, T, is defined
o n

by,

'A = c T

which leads to the expression,

8 Alh = (c/./gh )(8 T~ )
o n non

However because c/~ is a function of F and 8 'Alh ,
non

(3.77)

(3. 78)

(3.79)

where T' == 8 T glh
o n

(3.80)

Therefore one can prescribe T' instead of 8 A/h •
o n

The forTIl of the equations is such that the general functions in

equations 3.72 and 3.76 can not be written explicitly. The solutions

for c/.Jgh , h Ih, and h . Ih are plotted in figure 6 for valuesn TIlax n TIlln n

of F of 2.0, 2.5, 3.5, and 5.0, and values of 8 Alh up to 60. These
o n

relations were found nUTIlerically using a dig ita 1 cOTIlputer and

the above relations. Instead of starting with values of F and S 'A/h ,
o n
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it was more convenient to start with values of F and h>'~. and find the
mln

resulting value of S A/h . In this way no trial and error procedures
o n

were required.

The asymptotic solution for large values of S Alh can be
o n

obtained by first observing from equation 3.52 that because the value

of dhl dX is zero at h* ::: h*, the minimum value of h>\<. is h*. Equa-
a mln a

tion 3.54 shows that S X* approaches minus infinity at h>l<. ::: h*, and
o mln a

equation 3.56 indicates that S A* approaches infinity (because K1o

approaches infinity). Therefore for large values of S Alh , h* .
o n mln

approaches h* from above, and the water surface becomes parallel toa

the channel floor at h *. •
mln

The value of h Ih. is a function only of F for large values
max mln

of S A/h. It can be calculated from equations 3.53 and 3.46, which
o n

for h* ::: h*. become,
a mln

h>~. = (1/2F2) [1 + 2F + ./1 + 4F ]
mln

h Ih.::: 1/2 [./1 + (2/h*. )3 - 1 ]max mln mln

(3. 81)

(3.82)

Because K 1 approaches infinity, equation 3.67 shows that h* becomes
av

equal to h* or h*. • Therefore equation 3.63 can be written as,
a mln

h*3/ 2 ::: [(1 + F) h*. - 1 ]/F
n mln

(3. 83)

As S Alh approaches infinity the distance from h * ::: 1 (X* ::: 0) to
o n

h* ::: h*. also approaches infinity, whereas the distance from
mln

h* = 1 to h* ::: h>:<' remains finite. Thus it is clear that the averagemax

discharge must equal the discharge at h . because the distance over
mln
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which h . occurs is infinite, and that h must equal h . • This can
mln n mln

be proven by working with equations 3.83 and 3.81. To get a relation

between h* and h*. , F would have to be eliminated between 3.83 and
n mln

3.81, but this is not a simple manipulation. However, by using an

arbitrary positive value of F in equation 3.81 and substituting the

resulting value of h*. into equation 3.83, the value of h* is found tomln n

correspond to that-,of h*. . Therefore as S "'Alh approaches infinity,
mln 0 n

h* =h*. =hi" =h*a mln av n

The wave velocity is then only a function of F,

c/~ = (1 + F)/h*.n mln

(3. 84)

(3.85 )

where h*. is found from equation 3.81. Asymptotic values for largemln

S "'Alh are indicated on figure 6.o n

2. Discussion of Solution

From figure 6 it is seen that h Ih increases with both F and
max n

S Vh . At a Froude number of 2, this solution degenerate s to uniform
o n

flow. This indicates that there are no periodic solutions of the type

considered for Froude numbers of 2 or less. For the linear problem

considered in Section III-A a non-trivial solution existed for a Froude

number of 2, but the wave amplitude did not change with distance.

For a Froude number above 2, the wave amplitude increased exponen-

tially with distance. Thus, the behavior of the linear and non-linear

theories is quite compatible.
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The wave velocity has the expected value (c/~ = 1 + F) at a
n

vanishing wave length (uniform flow). In both the linear and non-

linear theory it is seen that the term S A/h appears. This allows a
a n

comparison between the wave velocities at.a fixed value of F and Y.

For vanishing values of Y the values of cl~ are the same
n

(c/.J'ilC =1 + F), and for Y > 0 the non-linear wave velocity is
n

larger. This can be seen by comparing values given by figures 3 and

6 for fixed values of F and Y. This is because the wave amplitude of

the non-linear theory is not restricted to be small, and the velocity

of a shallow water wave increases with the amplitude.

As the wave length approaches infinity the wave shape and

velocity approach a finite solution which gives rather substantial

values of h Ih. This corresponds to one wave of infinite lengthmax n

in a channel of infinite length.

h .
n

For this limiting case h . approaches
mln

Schonfeld (19) has claimed to have found that only the solution

with h Ih =2.07 is a stable one. However, in his work relationsmax n

were derived by assuming that there was a discontinuity in the water

surface at h =h (in addition to the one at the shock). The aboven

solution has no discontinuities of this type, and therefore Schonfeld's

result is doubtful. A stability analysis of the p~riodic pe~manent solu-

tion may lead to some interesting results. This reI;Ilains to be done.
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CHAPTER IV

LABORATORY EXPERIMENTS - APPARATUS AND PROCEDURE

IV -A INTRODUCTION AND OBJECTIVE

The two objectives of the laboratory experiments were:

1) To obtain information on roll wave trains that develop

naturally from a uniform flow; and

2) To obtain information on periodic permanent roll waves to

compare with theory. A long steep channel was constructed for this

study in the W. M. Keck Laboratory of Hydraulics and Water Resources.

In this chapter the steep channel and the apparatus used for the

measurements are described. The experimental procedure, including

a description of the quantities measured and the range of variables

used is also included. In the next section is a short description of

some preliminary work performed in a l30-ft channel.

IV -B PRELIMINARY EXPERIMENTS

A l30-ft tiltable laboratory channel 3.61 ft wide with a maximum

slope of 2% (i. e. sin e =.02 where e =angle of inclination from hori­

zontal) was utilized for some initial observations. It was found that,

because of insufficient length, roll waves were not formed in this

channel, even at the maximum Froude number of 2.65. Therefore

periodic disturbances were introduced at the inlet using a motorized

reciprocating sluice gate. The plan of these experiments was first

to make small disturbances and observe their growth in the l30-ft
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length of the channel. The next step of the plan was to increase the size

of the disturbances produced to correspond to that observed at the out­

let of the channel in the first experiment and to observe their growth.

By repeating this procedure it was thought that one could, in effect,

study the growth of waves in a very long channel. This objective was

only partially realized. The difficulty was that it was not pos sible to

produce waves at the sluice gate that had the exact size and shape of

those observed at the channel outlet. This made it impossible to

reliably piece together the different segments of the growing wave and

thus to predict from the experiments the wave growth as a function of

distance along the channel.

In these experiments there was one run in which the artificially

produced disturbances were large enough so that periodic permanent

waves were established near the downstream end of the flume. Because

the Froude number was les s than any in the steep channel, the data on

wave shape and velocity for this run will be included in the next chapter.

The method of obtaining data in this 130-ft channel was quite similar to

that used in the steep channel which is described below. The periodic

wave profile was obtained from a pressure record similar to that in

figure 14. In the 130 -it channel the maximum and minimum depths

were measured with a point gage. These point gage measurements were

obtained at five locations across the 3. 61-ft wide channel, and at five

meter intervals along the flume. The periodic waves were considered

to be permanent when the maximum and minimum depth did not change

over significant length. The 130-ft channel is described briefly in

Appendix I and in more detail by Vanoni (20) and Fischer (21).
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IV -C APPARATUS

1. Steep Channel

The bulk of the experiments was carried out in an extruded

aluminum rectangular channel 4-5/8 in. wide and 1-13/16 in. high.

This shape is available commercially in lengths up to 16 ft. For a

channel length of 128 ft and slopes of .08429 and .0501.1. eight of

these l6-ft lengths were joined (see figure 7). The length was later

changed to 80 it with a slope of . 1192 by removing three of the l6-it

lengths. The lengths of channel were joined by plates bolted to both

lengths as shown in figure 8. The ends of the two lengths were

separated by about 1/ 8-in. and body putty was used to fill the void.

Finally the joint was sanded to give a very smooth finish.

The channel was supported at 5-l/2-ft intervals by brackets

bolted to 2 x 4-in. timbers which were fixed to the concrete wall of

the laboratory. J -bolts were used to clamp the channel to the brackets.

Two adjusting bolts at the brackets were used to level the channel

transversely. For measurement of static pressure on the channel

floor, 1/32-in. diameter holes were drilled through the floor at the

approximate center line. These holes started at station 6 (6 ft down­

stream of station 0.0 shown on figure 11 ) and were put at 6-ft intervals

over the total length. A fitting was affixed to the underside of the

channel floor, to which a pressure transducer could be attached. The

details of the bracket and pressure hole can be seen in figure 9.

Figure 10 shows the principal dimensions at a station with a supporting

bracket.



Fig. 7.
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Negative No. 7835

General view of channel, S =.08429. t = 128 ft,
no flow 0

Negative No. 7836

Fig. 8. View of typical joint for channel
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Negative No. 7837

Fig. 9. View of channel showing support
bracket and pressure measuring
station
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The galvanized sheet steel inlet box had the same inside width as

the channel to avoid disturbances that would result from a contraction

or expansion. A drawing of the box is shown in figure 11 . Observa­

tions on the flow in the inlet are discussed in Chapters V and VI. A

plastic paddle hinged on the upstream wall of the inlet box and driven

by a variable speed fractional horsepower motor was used to create

periodic permanent waves. Figure 12 shows the inlet in operation.

Flow was supplied by a constant head tank located near the down­

stream end of othe channel. One· reach ef the supply line to the., inlet box

was a3 -in. diameter pipe in which a: l-l~/ 8,,"'in~ flange typeori:fiice plate

was-installed for measurement, of flo.w ,rates. After installation tbis

orifice plate was calibrated volumetrically using a:me.rcury 'or water

manometer to record the pressure drop across the orifice plate",

The slope of the channel was changed twice after the original

setting. To obtain a given slope all the brackets were first placed at

approximately the desired elevation, and then the adjusting bolts at

each bracket were used to obtain the final elevation. A surveyor f s

transit and a rod that could be attached to the channel was used in

obtaining the final elevation. The rod was graduated in .0 l-ft intervals

and was read to .001 ft with a vernier scale. The length of the channel

was measured with a steel tape with graduations of 1/16 in. Thus the

accuracy of the slope was controlled by the accuracy of the measure­

ments of the vertical distances. With the vertical distances accurate

to .001 ft, the channel slopes for the 120 ft channel (.05011 and .08429)

were accurate to .00001 (.001/120), and for the 80 ft channel the slope

(. 1192) was accurate to .00002. Once one side of the channel at a
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Negative No. 7838

Fig. 12. View of inlet box and channel near inlet
with flow

Negative No. 7839

Fig. 13. Closeup view of rough channel
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particular bracket was at the correct elevation, a hand level was placed

on the channel and the lateral adjustment was made. Longitudinal align-

ment was accomplished by placing the channel a fixed lateral distance

from a 0.010 in. wire that was strung the length of the channel.

Measurements (e.g. maximum depths, periods, etc.) were taken

only at the pressure hole stations. Invert readings at five locations

across the channel were taken with a point gage at each of the pressure

hole stations. It was found that the channel bottom was an average of

about. 010 in. lower at the center than it was near the side -walls for

stations not near one of the supporting brackets. At pressure hole

stations near one of the supporting brackets the channel bottom was

flat because of the clamping action of the J -bolts. At each station

a weighted average of the five invert readings was used to convert

water- surface readings to depths.

Two surface finishes were used for the channel. For the smooth

boundary an epoxy enamel was sprayed on the aluminum channel. A

rough surface was obtained by applying a uniform sand to the bottom

and walls of the channel immediately after they had been brush painted

with an enamel. The application of the sand consisted of covering the

bottom with sand and throwing it against the side -walls until no more

sand would stick. Three days later the water was turned on and the

excess sand was wash.ed off, leaving a uniform roughness about one

grain diameter thick. Figure 13 shows this rough channel. The geo-

metric mean size of the sand grains, D , and geometric standard
g

deviation, (J , were. 595 mm and 1. 11 respectively. Table 1 contains
g

the results of the sieve analysis of the sand.
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Table 1

Sieve Analysis of Sand in Rough Channel

Mesh per in (Tyler) Sieve Opening rom 0/0 Finer by Weight

16 .991 100.00

20 .833 99.90

24 .701 95. 10

28 .589 42.70

32 .495 3.88

35 .417 .98

42 .351 .33

48 .295 .25

60 .246 .22

65 .208 . 17

100 . 147 .09

150 . 104 .06

200 .074 .03

Geometric mean size = O. 595 mm

Geometric standard deviation = 1. 11
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Z. Measuring and Recording Equipment

a. Pressure Transducer

Much of the data taken consisted of records of the floor

pressure as a function of time at the stations with pressure holes.

These pressure" records were converted to depth records, except for

the portion of the wave near the maximum depth. by the use of a: calibra­

tion. The method by which this calibration was obtained is explained

below in this section. These pressures were measured with a model

P7D pressure transducer manufactured by the Pace Engineering

Company. In this transducer deflections of a 0.004 in. stainless steel

diaphragm were measured by changes in magnetic reluctance of two

magnetic cores, and the resulting voltage changes were recorded by

a Sanborn series 150 recording oscillograph system. The transducer

is shown at the left end of the angle iron in fig.ure 9. It was connected

to the pressure hole with a short piece of 3/ l6-in. plastic tubing, via

a three-way valve used for bleeding and calibration purposes. The

transducer and valve were mounted on a piece of angle iron so that the

whole assembly could be placed at any pressure hole station. Figure 14

shows a typical pressure record of shock-type roll waves.

b. Wire Gage and Point Gage

A particularly simple device was used to obtain the frequency

distributions of maximum depths,to calibrate the pressure transducer,

and to measure normal depths. The instrument will be referred to as

a wire gage. The wire gage, shown in figure 15, consisted of a stain­

less steel micrometer head(reading to 0.001 in.) mounted vertically

in a base of aluminum stock which rested on top of the channel walls.



..,.
'-D

Fig. 14. Typical pressure and wire gage record for shock-type roll waves, S = .1192,
h =.210 in., station 36, smooth inlet a

n



50

Negative No. 7840

Fig. 15. View of wire gage and pressure
transducer with waves approach­
ing



51

On the lower end of the micrometer head was attached a short piece of

0.020 in. diameter stainless steel wire. The aluminum base was

wired to the Sanborn recording system.

The oscillograph record from a wire gage is shown in figure 14.

As can be seen, the wire gage reading changed from its reading in air

only when the wire was in contact with the water. In figure 14 the wire

gage was directly over the pressure hole and high enough so that it

was in contact only with the wave peaks. The elevation of the wire was

changed by rotating the micrometer. It was found that the wire was

small enough (.020 in. diameter) so that no water was observed to

hang below the lower end of it which would be undesirable.

The change in the wire gage reading on the oscillograph chart when the

wire was in contact with the flowing water indicates that the wire tip of the

wire gage was at a different electric potential when immersed in the water

than when in the air. The difference in the potential was on the order of 0.1

volt. Although the mechanism responsible for the existence of an electric

potential was not investigated, the response characteristic s of the wire gage

were excellent for the measurements for which it was used.

A point gage was used to measure the elevation of the channel

bottom, and occasionally to obtain estimates of the average maximum.

depth of small amplitude waves. This point gage was identical to the

wire gage except that instead of a small wire, a stainless steel point

was attached to the lower end of the micrometer head. These values

of average maximum depth were obtained by setting the point at a given

level and estimating what proportion of the wave crests that passed by
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were hitting the point. The average maximum depth was taken as that

depth corresponding to the elevation of the point at which about one­

half of the wave crests hit the point. By this procedure, repeatable

values of average maximum depth could be obtained for the small

amplitude roll waves.

c. Recording Equipment

The Sanborn recording oscillograph system, series 150, was

used for recording signals from the pressure and wire gages. A

carrier preamplifier model 150-1100 AS was used with the pressure

transducer, and a DC preamplifier model 150-1000 with the wire gage.

Figure 16 shows the four channel. Sanborn unit which was used to

record two pressure traces and two wire gage records simultaneously.

d. Calibration of Pressure Transducer System

For conver sion of a pressure record, such as in figure 14,

to a depth record, a calibration was required. From the resulting

depth record, only the minimum depths were taken. The maximum

depths were obtained from the wire gage record by a procedure

explained later. The maximum depths were not taken from the

pressure record for two reasons. First, the frequency response of

the system as described above was probably not adequate to record

the very fast rise in pressures encountered near the steep wave fronts.

Second, the pressures directly under the crests of the shock-waves

were probably not hydrostatically distributed, so that even if the floor

pressure were correctly recorded, the correct depth of flow could not

be found from them.
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Negative No. 7841

Fig. 16. View of 4-channel oscillograph
recorder with wire gage and
pressure transducer
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A calibration consisted of a relation between the depth of flow at

the center line of the pressure station in question, and the reading on

the recorder chart. An in situ calibration was obtained before each

run. When a pressure transducer was moved to another station, it

was calibrated again.

Both static and dynamic calibrations were obtained. A static

calibration was obtained by varying the level of water in the plastic

cylinder connected to the pressure transducer shown at the right side

of figure 9. This changed the pressure on the transducer and thus

the reading on the recorder chart. By measuring this water level in

the cylinder with the point gage and noting the corresponding chart

reading, a static calibration was developed. This calibration was

always linear.

A dynamic calibration was obtained by using a wire gage located

directly over the pressure hole. As illustrated in figure 14, when the

water level dropped below the level of the wire, a change in the wire

gage reading occurred. Thus at that exact time, the pressure record

must have corre sponded to the elevation of the wire. By changing the

setting of the wire gage a complete dynamic calibration curve was

constructed. This calibration was linear also. Figure 17 shows a

typical calibration of the pressure measuring system.

In most cases the slopes of the static and dynamic calibrations

were the same. This indicated that the pressure being recorded was'

in fact only the static pre ssure, because the velocity, and thus the

velocity head, varied along the wave length. If part of this velocity

bead were being recorded because of some imperfections around the
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pressure hole, the slopes of these two calibrations would be different.

However the two calibrations were not necessarily coincident because

of different reference levels from which the elevations were measured.

In all cases the dynam.ic calibration was used to get the values of

minim.um. depth. The static calibration was used m.ainly as an aid in

determ.ining the slope of the dynam.ic calibration, and as a check on

the drift in the calibration, if any, during the run.

IV -D EXPERIMENTAL PROCEDURE

1. Design of Experim.ents

Data were obtained on both naturally developed and periodic roll

waves for three different channel slopes. Two or three different dis­

charges were used on each slope. For the largest slope a rough

channel was also used. Norm.al depths were m.easured for all slopes

and discharges. Table 2 sum.m.arizes these channel conditions and

states what type of m.easurem.ents were made.

The measurem.ents desired on natural waves for a fixed slope and

discharge could not all be taken in one continuous run. Therefore it

was necessary to be able to duplicate a particular discharge quite

accurately. It was found that a manometer reading could be set within

1/2 percent of a given value, and thus the discharge was accurate to

1/4 percent. During a run the discharge was adjusted if necessary

to stay within this lim.it. The discharges in table 2 correspond to the

de sired m.anom.eter readings.
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Table 2

Types of Measurements Obtained
for Each Slope and Discharge

Type of Measurements Obtained

S Q-ds Cbannel Normal Periodic Natural
0 Surface Depth Waves Waves

· 05011 .01700 Smooth x x

· 05011 .03433 Smooth x x x

.05011 .05142 Smooth x x

.08429 .02304 Smooth x x x

.08429 .04601 Smooth x x x

.08429 .06843 Smooth x x

· 1192 . 02831 Smooth x x x

· 1192 .08222 Smooth x x

· 1192 .007523 Rough x

· 1192 .01717 Rough x x x

· 1192 .. 04798 Rough x x x
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2. Normal Depth

Normal depths were measured in the reach of uniform flow up­

stream of the region in which developing roll waves were first detected.

The depth of flow was measured at five locations across the channel at

each station, and at a minimum of four stations that were 2 to 4 ft apart.

The water-surface level was very unsteady, which is characteristic

of high velocity flows. This made it very difficult to measure the

normal depth with a point gage. However the response characteristics

of the wire gage were particularly well suited for measuring the no.rmal

depth. Figure 18 shows a typical oscillograph wire gage record when

it was set close to the normal depth.

In figure 14 it was seen that the wire gage oscillograph record

showed one reading when the lower end of the wire was in contact with

the flowing water, and another reading when the wire was out of the

water. When the wire was set near the Il1)rmal depth in a uniform flow,

the reading on the oscillograph chart fluctuated rapidly between the

"in water" reading and the "out of water" reading, as seen in figure 18.

It was found that by varying the elevation of the wire, the recorder

stylus made a darker impression either on the "in water" or th~ 'lout

of water" side of the record. In figure 18 the. 280-in. record shows

a darker impression on the "in water" side, whereas when the wire

was raised. 010 in. to .290 in., the "out of water" side of the record

shows a darker impression. It was assumed that the normal depth

corresponded to the case in which the recorder stylus made equivalent

impressions on the "in water" and "out of water" sides of the record.
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Fig. 18. Typical wire gage record used to measure
normal depths
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Thus for the case shown in figure 18, the normal depth was taken to

correspond to the. 286 in. wire gage reading with an accuracy of about

.002 in. In some cases with higher velocities this accuracy was

about • 004 in.

3. Wave Properties Measured

a. Naturally Developed Roll Waves

Four properties were measured:

(1.) Minimum depths (h . ) were obtained at stations
- mln

along the channel by using the pressure records (e. g. figure 14) and

dynamic calibrations. At each station values of minimum depth were

obtained for about 200 waves from which the average value and the

standard deviation were calculated. In some cases a frequency distri-

bution was constructed from these 200 values. This sample of about

200 measurements was found to be large enough to obtain consistent

results. A minimum depth measurement that was greater than the

average depth (i. e. average depth over many waves as estimated by

eye from the pressure record) was not considered in these calculations.

This eliminated those minimum depths between two waves that were

about to combine. As an exaTI1ple the TI1iniTI1um depth between the

wave crests 5 and 6 at station 72 on figure 47c would not be used in the

calculations.

(2.) Periods (T) at stations along the channel were obtained

froTI1 the pressure records. The period is siTI1ply the time period

between successive wave crests. Thus the period of a wave is its

length on the recorder chart. divided by the chart speed. When two
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waves were about to combine, they were considered to be two waves

as long as the peak of each wave was clearly delineated on the

pressure record. For obtaining standard deviations and frequency

distributions about 200 values of period were used. The average

period of the shock waves at a station was usually calculated from

about 1500-2000 waves to obtain consistent results.

(3.) Wave velocities (c) were obtained at stations along

the channel. This required using pressure records from two stations

taken concurrently. These stations were usually 6 ft apart but some-

times up to 18 ft apart. A particular wave was identified in each

record and then its travel time between the two stations determined.

For each pair of stations the average value, standard deviation, and

frequency distribution of wave velocity was based on about 200 obser-

vations. 1£ two waves combined between the pair of stations being

used, their velocities were not computed because the wave velocity

changes appreciably during this overtaking process. The average

wave velocity was assumed to apply to a station midway between the

pair of stations.

(4.) Maximum depths (h ) were obtained on the center
max

line of the channel at stations along the channel. For the small ampli-

tude waves, a pressure record similar to figure 41 was used to obtain

the maximum depths. For reasons explained in Section IV-C, the

maximum depths ef the large:_amplitude shock-type waves were not

obtained from the pressure record, but from simultaneous wire gage

and pressure records. The method was first to construct a frequency

distribution of the maximum depths at a given station, and then to
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derive the average value and standard deviation from it. The frequency

distribution was determined by placing the wire at a known level and

obtaining a record of at least 200 waves. The wire gage level was

then changed and again 200 waves were recorded. For each level of

the wire, the percent of the waves that hit the wire could be found

using the pressure record to count 200 waves and the wire gage record

to count the number of hits. The wire was varied from a level where

all the waves hit up to a level where none of the waves hit. The wire

was moved through at least ten intervals of .025 in. at most, and less

when the standard deviation of the maximum depths was small.

The standard deviation of the wave heights was found by plotting

the cumulative frequency distribution (value of h vs. percentmax

greater than or equal to) on arithmetic probability graph paper. This

paper is designed so that a Gaussian distribution plots as a straight

line. Figure 37 shows some typical results. In all cases the plotted

values could be well represented by a straight line. Thus the standard

deviation was found graphically as the difference between the 50

percent value and the 84. I percent value. These values corne fTom

the well known properties of a Gaussian distribution.

The average value of the maximum depths was calculated by

multiplying the percent of waves between two successive wire levels

by the average wire level (wire level at lower end point plus I / 2 of

interval), and summing all these products. This method gives a good

estimate of the true average for any frequency distribution as long as

the intervals are sufficiently small. Because the frequency distribution
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is Gaussian in this case, the average value, computed as above,

agreed with the mean value on the probability graph within about

.002 in.

A digital computer was used to compute the statistical quan-

tities for the four wave properties.

b. Periodic Permanent Roll Waves

Periods, wave velocities, and maximum depths were

measured in the same way as explained above for natural waves. How­

ever for p~ri0ili~ waves ,t4er·e was only one v:aJue fQr each of these.

quantities. at a given station oecause all waves were the same. In
addition, after the waves hav,e .reached a' permanent form the.wave

propertie s do not change with station.

Wave shape, including minimum depth, was determined for most

of the periodic wave runs. The wire gage and bottom pres sure

records were used to determine the profile of the waves including the

steep fronts. The sensitivity of measurement of the time interval

was increased by increasing the recorder paper speed. The distance

from the toe of the wave front to the point where the wire of the wire

gage intersected the water surface was obtained as the product of the

time interval and the wave velocity.

4. General Procedure for Natural and Periodic Roll Wave Runs

For runs with natural roll waves pressure records and wire gage

records were taken at two stations concurrently. These stations were

generally 6 ft apart but sometimes they were up to 18 £t apart. After

obtaining static and dynamic calibrations, a record of about 200 waves
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was taken at chart speeds of 25 or 50 rn:rnl sec. Then maximum depths

were measured at both stations with the wire gages at a chart speed

of about 5 mml sec for several wire elevations. Sometimes the instru­

ments were left at a particular pair of stations and data were taken at

two or three discharges before they were moved to another pair of

stations. More consistent results were obtained when measurements

at all stations were taken before changing the discharge. In this way

the data for one discharge could be obtained in about one week.

For runs with periodic waves the paddle in the inlet box (figure 11)

was oscillated at the desired period. The amplitude of the paddle

motion cou~d be varied by adjusting the stroke of the connecting arm

from the motor. By suitable adjustment of the paddle amplitude a

periodic permanent wave could be produced. However it took a certain

length of channel before the periodic waves assumed a permanent form.

This length of channel decreased for the larger paddle amplitudes. By

measuring the maximum depth over a considerable reach of the

channel, the region of permanent waves was found. The maximum

depths reported for the periodic permanent waves are averages of

measurements at four stations which generally covered about 30 to 40 ft

of channel. The velocity and profile of the periodic permanent waves

were also measured. In some cases, particularly for short wave

periods and thus short wave lengths, a periodic permanent wave train

would show signs of becoming nonperiodic near the downstream end of

the channel.
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CHAPTER V

PRESENTATION OF EXPERIMENTAL RESULTS

V -A INLET CONDITION

1. Smooth and Rough Inlet

a. Observations of Flow Near Inlet

The inlet condition was found to have a significant influence on

the distance from the inlet where roll waves could first be seen or

measured. If the channel bottom near the inlet was left smooth, just

as the rest of the channel, the natural roll waves developed further

upstream than they did when a small length of the channel bottom near

the inlet was artificially roughened.

By using continuous dye injection in the inlet box where the

velocities were low, the behavior of the flow in the channel near the

inlet could be observed. Observations of this kind were made for all

runs at slopes of .05011 and. 1192. The general flow characteristics

were similar for all runs. For a smooth channel bottom, immediately

downstream of the reservoir the water surface was glassy smooth and

a dye stream just below the water surface remained intact. However

after a sufficient distance the dye stream began to mix with the water

until it was completely mixed. This point where mixing began was not

fixed for a given run, but oscillated up and down the channel in an

intermittent manner. The smooth water surface became roughened at

about the same station as the mixing began, and this station of surface

roughening oscillated also. A dye stream near the channel bottom had
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a similar appearance and did not mix with the water until it was near

the station where the surface dye mixed.

The channel bottom near the inlet was made rough by placing a

6 -in. length of fine mesh screen on the bottom of the inlet box, so that

the downstream end of the screen was about 0.30 ft upstream of

station O. O. The widths. of the screen and the channel were the same.

For this condition the behavior of the dye near the water surface was

similar to that in the smooth channel case, except that the mixing

occurred further upstream and the initial mixing point for a given

discharge was stationary. However the dye stream near the channel

bottom was completely mixed at the downstream end of the screen.

Dye streams at intermediate elevations began to mix at stations

between the end of the screen and the station where the surface dye

began to mix.

These observations can be adequately explained in terms of

boundary layers. For a smooth inlet a laminar boundary layer was

developed initially which eventually became turbulent in an inter-

mittent fashion. For a rough inlet a turbulent boundary layer was

initiated by the screen, and this boundary layer eventually reached

the water surface. Because no transition from laminar to turbulent

flow was required, no unsteadiness was introduced. More will be

said about this boundar y layer notion in Section VI- C.

The general flow pattern described above for a smooth channel

bottom was most clearly displayed at the lowest discharges corres-

ponding to a normal depth (h ) of about • 2 in. For this value of hn n

the dye stream stayed intact further downstream and the disturbances
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associated with the transition from laminar to turbulent flow were

sufficiently strong to create shock-type roll waves almost immediately.

However at normal depths of .3 and. 4 in. the surface disturbances

near the zone of dye mixing were not as pronounced, although at times

these disturbances could be seen to eventually develop into roll waves.

Figure 19 shows water-surface profiles for a typical condition near

a smooth inlet at a normal depth of • 2 in. Three surface profiles are

plotted; the depth during periods when the surface was smooth, the

average depth during periods when the surface was rough, and the

maximum depth during periods when the surface was rough. These

depths were measured using a wire gage and point gage at the channel

center line. From the trend of the maximum depth values, it is seen

that appreciable disturbances were developed, even at station 5.0 ft.

It is interesting to observe that the depth of the smooth water surface

fell below the normal depth. For a rough inlet at the same slope and

h as shown on figure 19, comparable disturbances did not become
n

appreciable until about station 30.

For normal depths of .3 and. 4 in., and a smooth inlet, the depth

did not jum.p discontinuously from a low depth (smooth water surface)

to a higher depth (rough water surface) as shown in figure 19. Instead

there was a more gradual transition from a smooth to a rough water

surface, although the point of roughening was oscillating somewhat.

For normal depths of .3 and. 4 in. with a rough inlet, there was also

a gradual depth transition from a smooth water surface to a rough

water surface. However this surface roughness, and the associated

intersection of the turbulent boundary layer with the water surface,
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occurred farther upstream and in a more nearly steady manner than

the flow with a smooth inlet. This observation is consistent with the

fact that a turbulent boundary layer develops faster than a laminar one.

For the rough channel the conditions at the inlet were similar to those

in a smooth channel with a rough inlet because the sand grains caused

the initiation of a turbulent boundary layer as the screen did in the

smooth channel.

b. Adjustment to Rough-Inlet Condition

From the experiments it was found that with a smooth inlet,

a given value of average maximum depth (il ) occurred at a smaller
max

value of .t (.t =distance from station 0.0) than with a rough inlet. This

fact is consistent with the observations on the flow conditions near the

inlet presented above. It was found that with a smooth inlet there

were surface disturbances which resulted from the intermittent manner

in which the water surface became rough. Presumably this inter-

mittency resulted from the laminar boundary layer becoming turbulent.

With a rough inlet the location of water-surface roughening was

stationary in time, at least much more so than with a smooth inlet,

and surface disturbances resulting from this surface roughening were

not observed. Therefore for a smooth inlet excess disturbances

(other than those present for a rough inlet) were provided to initiate

the development of roll waves.

One purpose of this study is to describe some geometric properties

of natural roll waves as a function of distance from the beginning of the

channel (i. e . .t). From the above discussion it is clear that even for

a fixed discharge, slope, etc., the value of a given property, say
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h ,at a given value of .t depends on the inlet condition. For the
max

data to be presented, this dependence on the inlet condition was

eliminated by adjusting the smooth-inlet results to a rough inlet.

For each sm.ooth-inlet run this was done by adding a correction length

to the values of.t so that the adjusted developm.ent relations (e. g.

11 vs • .t) were the same as those that would have been obtained
max

with a rough inlet. For runs in which a rough inlet was used, and for

the runs in the rough channel, no correction was necessary.

To obtain a correction length for a smooth-inlet run, some data

are also required for the same hydraulic conditions with a rough

inlet. For each run two correction lengths were determined; one

from the 11 vs • .t relations for a smooth and rough inlet, and one
max

from the T vs • .t relations for a smooth and rough inlet. T is
av av

the average wave period. For each of these relations the procedure

was to slide the two graphical relations (smooth inlet and rough inlet)

along the .t a~ds until the data points for both the smooth and rough

inlet relations showed a unique relation. The amount of displacement

along the .t axis was the correction length. For each run the two

correction lengths using the hand T relations were practically
max av

the same.

In the runs with normal depths of .3 and .4 in., the data points

for the smooth and rough inlet could be made to define a unique relation

between hand .t or T and.t, over the range of h or T that
max av max av

was represented by the data. In other words the effect of the smooth

inlet was to translate the development relations upstream without any

change of their shape with respect to the relations for a rough inlet.
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However for the runs with a normal depth of • 2 in., the initial part

of the smooth\..inlet development relation had a different shape than

the corresponding rough-inlet relation. This smooth-inlet effect on

the shape of the development curve is shown in figure 20 for the 11max

development relation. As was mentioned in the last section, in the

smooth -inlet runs with a normal depth of .2 in., shock waves were

established quite close to the inlet as a result of the intermittent

behavior associated with the water surface becoming rough. With a

rough inlet, shock waves were formed from small amplitude waves

which developed from a uniform flow. These two different methods

by which ahock waves were formed help explain the differences in the

development relations as shown for 11 in figure 20. The develop­
max

ment relations to be presented in this chapter apply to roll waves that

develop from a uniform flow. Therefore, for the smooth-inlet runs

at a normal depth of • 2 in., the data points that showed the smooth-

inlet effect on the shape of the development relations (e. g. the seven

smooth inlet points for 11 /h less than about 1.6 in figure 20) were
max n

not included on the development relations applicable to rough inlets.

The. correction length for each run in which a smooth inlet was

used is shown in table 3. It is seen that the correction length

decreased as the normal depth increased, and decreased as the

channel slope was increased.
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Table 3

Correction Lengths Added to Smooth-Inlet Development Relations

~. .2 inch .3 inch .4 inch

.O5011 51 it 25 16

.08429 30 12.5 0

• 1192 24 - -

2. Drawdown Curves Near Inlet

From the water level in the inlet box the depth of flow decreased

to the normal depth in a short distance. These drawdown curves

were measured for most runs and several are shown in figure 2l.

Some depths were measured with a wire gage using the same technique

to obtain the average depth as was used to obtain the normal depths.

Other depths were measured with a point gage and were subject to the

larger errors of this method. In both cases only center-line deptbs

were measured. The main purpose of these measurements was to

determine the conditions near the inlet.

For normal depths of .3 and. 4 in. it was found that the drawdown

curves were the same for a smooth or rough inlet. However for a

normal depth of .2 in., the smooth-inlet condition was very unsteady

as shown in figure 19. Thus the drawdown curves for a normal depth

of .2 in. in figure 21 are for a rough inlet. Station 0.1 ft was the

starting point of the drawdown measu.rements, whereas the reservoir
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is about 9 in. upstream of this station. Measurements upstream of

station O. I ft could not be obtained conveniently because the higher

walls interfered with the supporting mechanism for the depth gages.

V -B HYDRAULIC CHARACTERISTICS OF LABORATOR Y CHANNEL

From the measured normal depths the friction factors, Froude

numbers, and Reynolds numbers were calculated. These are pre-

sented in table 4. The relation of Darcy-Weisbach friction factor, f,

against Reynolds number, R, for the smooth channel is shown in

figure 23, on which is plotted the relation obtained experimentally

by Tracy and Lester (22) for a smooth, wide, rectangular channel.

The experimental points obtained in the present study follow this

relation quHe well, with an average deviation of only 2.2 percent.

The Froude numbers for the data in figure 23 vary from 3.45 to 5.98,

which provides more evidence that the friction factor in unstable flow

is not a function of the Froude number as proposed by Rouse (17).

For a rough boundary the friction factor can be expressed in the

form,

Kif = 2.03 log 10 (r /k) + constant

which can be derived from the theoretical works of Prandtl and

(5. 1)

von Karman as Keulegan has shown (23). Here k is the size of the

roughness elements which in this case was the geometric mean size

(.595 mm) of the very well sorted sand. Figure 22 shows that two of

the data points follow the above relation where the constant is 2. 17.



Table 4

Hydraulic Characteristics of Laboratory Channel

Slope Channel Width Water Discharge Normal Normal Froude Friction Reynolds
S Surface b Temp Q Depth Velocity No. Factor No. R

0 in °c ds h F f ·:4l"U Ivun n n
in fps

.05011 4.625 23.7 .01700 .206 3.45 4Smooth 2.57 .0308 1. 63x 10

· 05011 Smooth 4.625 23. 1 .03433 .314 3.40 3.71 .0257 3. 11

.05011 Smooth 4.625 22.7 . 05142 .404 3.96 3.81 .0235 4.47

.08429 Smooth 4.625 24.4 .02304 .208 3.45 4.63 .0289 ·2.24

.08429 Smooth 4.625 24.8 .04601 .314 4.56 4. 96 .0241 4.33

.08429 Smooth 4.625 25.0 .06843 .404 5.27 5.06 .0224 6.a6

· 1192 Smooth 4.6a5 21. 9 .02831 .210 4.20 5.60 .0279 2.60

· 1192 Smooth 4.625 22.3 .08222 .409 6.26 5. 98 .0227 7.07

· 1192 Rough 4.55 23.2 .007523 . 116 2.05 3.68 .0669 .750

· 1192 Rough 4.55 22.6 .01717 . 199 2.73 3.74 .0626 1. 63

· 1192 Rough 4.55 23.7 .04798 .375 4.05 4.04 .0501 4.37

-J
0'

·I"·····T , _·" ......·'~r··
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In figure 22 {) is the thickness of the laminar sublayer and taken to be

11. 6 V /../T7P. From Nikuradse's experiments on rough pipes with a
o

uniform sand roughness, the equation for the velocity distribution is

(23) ,

u /u ole = 8.5 + 5.75 log (y/k)
p

(5.2)

where u is the velocity at a distance y from the rough wall, and u;"p ~

is the shear velocity. By applying this expression to a wide rectangular

channel, the constant in equation 5. I is found to be 2.12, which agrees

quite well with the experimental value of 2. 17.

One data point in figure 22 is not consistent with the other two.

This is apparantly because the flow was in the transition region

between a rough boundary and a smooth boundary. This transition was

found in Nikuradse's data, (see for example Rouse (24) pg. 206) where

the deviation from the rough-wall relation began at a k/ {) value of

about four. Thus the point of departure from the rough wall relation

for a channel is consistent with the rough-pipe results. Nikuradse's

data showed that as the value of k/ 6 was further decreased the data

points approached the smooth-boundary relation. The dashed line in

figure 22 indicates the general trend expected if more data were

available.
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V-C NATURAL ROLL WAVES

1. General Description

Roll waves developed from uniform flow in the laboratory channel.

The waves were first clearly visible in a reach of channel downstream

of the uniform flow where the waves acquired a steep front (shock wave)

which extended acros s the channel. This point where the waves formed

shocks was not fixed for a given run, but varied with each successive

wave which indicated that these natural waves were not periodic. In

fact, the most striking feature of these natural roll waves was the non-

periodicity at all stages of their development.

It was found that there was a station downstream of which no rno re

roll waves were formed, and the waves that had formed propagated in

a nonperiodic manner. In fact the velocities of the shock waves were

such that some waves would overtake and combine with the wave immedi-

ately downstream. In some cases this process was repeated two or three

times by the same wave before reaching the end of the channel.

The general appearance of a typical roll wave train in the labora-

tory channel is shown in figure 24. The nonperiodic nature of the shock

waves is evident in this photograph. Figure 25 shows a clo seup view of

one complete wave. The depth variation along the wave can be seen by

noting the distance from the water surface to the top of the side wall.

By comparison with figure I, the similarity of the laboratory and field

roll waves is seen. One noticeable difference is the absence of "white

water" near the shock front of the laboratory waves. This is caused by

entrained air which occurs at high wave velocities unattainable in the

laboratory.

r
F
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Negative No. 7842

Fig. 24. General view of channel with
natural roll wave s, S =.1192,
h = .210 in. 0

n
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Fig. 25. Side view of roll wave, S =.08429, h =.208 in.
station 94 _ 98 0 n
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2. Tabulated Basic Data

Because of the nonperio.dic nature of natural roll waves, it is

necessary to measure the frequency distribution of the wave property

desired. This was done for the four properties maximum depth h
max

'

minimum depth h . , period
min

T, and wave velocity c. The method

of obtaining these measurements was explained in Section IV -D. The

results in terms of average values and standard deviations for all runs

are contained in table 5. In some cases h values were estimated
max

by eye with a point gage. Point gage measurements were usually only

used to aid in finding the correction lengths for the smooth-inlet data.

For small amplitude waves (prior to forming shock waves) the h
max

values obtained from pressure records are more accurate than esti-

mates with the point gage. In table 5 the values which were used on

the graphs are indicated. Note that for the rough channel (table 5i) aiya

minimum amount of data were obtained. Thus the data on the graphs

are for smooth channels unless they are noted to be rough.

3. Dimensionless Development Relations

One main purpose of this study is to describe certain geometric

properties of natural roll waves. To make this description applicable

to any channel, these properties must be expressed in meaningful

dimensionless terms. To describe the development of the four

properties considered in this study, the relations h Ih .vs. t/h ,max n n

h . Ih vs. t1h , S T ../iih vs. t/h , and c l...fih vs. t/h
min n n 0 av n n av n n

were used. These dimensionless expressions for the period and wave

velocity came from the periodic permanent wave theory in Chapter III.
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Table 5a Buic Data for Natural Roll Wave.

So = .05011 h =.206 inchn

Rough Inlet Smooth Inlet (Correction to match rough inlet =51 ft)

Station n C7h T
b

(hmax)max Ii C7 h T C C7 T Iimin
C7 h min c C7

ft
max max av max max av av c

inch inch sec inch inch inch sec sec inch inch fps fps

6 .217
a

.254·8 .231 .015 .457 3. 53e

12 .217a .314-1 .256 .021 .558 .lnd .021
d

18 . Z2 la .349- I .275 .035 .676 3.63 .15
24 .225 a .390-1 .297 .033 .776 .362 .157 .021

30 .234& .406-2 .311 .040 .816
3.70 .16

36 .239
a .405-4 .319 .043 .891 .441 .148 .019

42 . H8a .455·2 .333 .046 1. 030

48 .259
8 .469-2 .351 .049 1. 119

54 .471-1 .355 .042 1.214 3.90 .17
60 .290f .023 .731 .469-3 .364 .045 1. 290 .611 . 144 .017

66

n
78 .508-2 .387 .042 1. 487

3.99 .16
84 .324f .030 .964 .524-1 .391 .044 1.549 .704 .135 .015

90 .482-6 .392 .044 1. 653 4.02 .16
96 .508-2 .396 .044 1. 695 .719 .133 .018

102 .350
f .040 1. 178 .537-1 .404 .048 I. 777 4.10 .17

108 .537-1 .417 .046 1. 848 .851 .140 .015

114 .529-3 .419 .045 1. 900 4.12 .18
120 .375f .039 I. 391 .529·1 .424 .045 1.973 .928 .134 .013

Notes: a. PoInt gage measurement d. Based on 50 values

b. Based on 500 to 700 peaks e. Baoed on 30 va.lue.

c. Based on 1200 to 2000 pe&ko f. Baoed on 100 peaks per elevation

Unless noted otherwise, average values and standard deviations were computed from
about 200 values.

Smooth Inlet data for stations 6 to 42 ohow the effect of & smooth inlet &nd were nol
used on graphs on whIch W&Ve properties were plotted as & function of (./hn .

The integers following the (hm&xlm&x value. indicate the number of peak. out o[ 200

peaks that were higher than the value of (hmax)ma.x indic&ted.
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..
Table 5b Basic Data for Natural Roll Waves

S =.05011 h =.314 inch
0 n

Rough Inlet Smooth Inlet (Correction to match rough inlet =25 ft)

Station n °h T ac (hmax1max n °h T °T n °h
min

c 0

ft
max max max max av min av c
inch inch sec inch inch inch sec sec inch inch fps fps

6

12 .328
a .324d

18 .334
d

!24 .320a .337
d .

30 • 349
d .744 4.63g !

36 .331
a .358d .744 ~

42 .37Zd .7Z9 4.73g l
L

48 .338 a .737 ~.

54 .481-2 .401 .034 .733 e .248f . 020f
4.74g

60 .359a .499-3 .414 .040 .758e

66 .539-1 .434 .042 .815e
4.81 . 15

7Z .557-1 .446 .044 . 860e .370 .232 .027

78 . 528-4 .446 .041 .897e
4.82 .15

84 .418b .036 .767c .564-2 .454 .042 .931e .377 .221 .027

90 .632-1 .478 .055 I. 044e
4.89 .18

96 .608-3 .492 .056 I. 084e .491 .218 .032 i
102 .443

b
.036 .874c • 587-2 .481 .046 I. 098

e
4.90 .17 ~108 .612-4 .498 .053 I. 156e .502 .214 .028

.659-2 .514 .060 I. 248e ~
114 4.95 .18 r120 .474b .051 I. 008c .659-2 .518 .0595 I. 304e .538 .204 .027

I
I

Notes: a. Point gage measurement e. Based on 1600 to 3000 peaks I
b. Based on 100 peaks per elevation f. Based on 50 values

c. Based on 600 peaks g. Based on 25 values

d. Mealured from pressure record (50 values)

Unle.s noted otherwiee, average values and standard deviations were computed from
about 200 values.

Rough inlet data on h
max

for stations 12 to 60 were not uaed on the graphs because the

smooth inlet data for this initial growth are more accurate.

The integers following the (hmax)ma" values indicate the number of peaks out of 200

peaks that were higher than the value of (hmax)max Indicated.
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Table 5c Ba.ic Data for Natural Roll Wave.

5
0

".05011 hn " . 404 inch

Rough Inlet Smooth Inlet (Correction to match rough inlet" 16 it)

Station
ft

6
12

18

24

30

36

42

48

54

60

66

72

78

84

90

96

102

108

114

120

nmax
inch

°hmax
inch

.036

.046

T av
sec

(hmax)max
inch

.568-2

.564-8

.627-1

.608-11

.637-3

.687-1

.684-2

.684-4

nmax
inch

.416d

.421
d

,418d

.421d

,422d

,434
d

.440d

.453
d

.459
d

.480d

,487

.495

.511

.528

.528

.542

.560

.570

°h
max

inch

.034

.038

,044

.052

.050

.054

,055

.058

T av
sec

.808

.808

.805

.805

.822

.822

.846

.854

.877

.890

.903

.922

.986

I. 021

n .mm
inch

,286

.325

.402 .296

.454 .293

°h .
mm

inch

.030

.033

c av
fps

5.56

5.55

5.55

a
c

fps

.17

.18

. 19

Notes: a. Point gage measurement

b. Ba.ed on 100 peaks per elevation

c. Based on 500 peaks

d. Measured from pressure record (50 values)

Unlel8 noted otherwile, averale value. and Itandard deviation I were computed from
about 200 values.

Rough inlet data on n
max

for .tations 30 to 90 were not u.ed on the graphs because

the smooth inlet data for thlo initial growth are more accurate.

The integers following the (hm~)maxvalue. indicate the number of peaks out of 200

peaks that were hillher than the value of (hmax)max indicated,
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Table 5d Basic Data for Natural Roll Wave.

S = .08429 h = .208 inch
0 n

Rough Inlet Smooth Inlet (Correction to match rough Inlet = 30 ft)

Station h a T
b

(hmax)max h °h T
d

°T h
mln

°h
min c O'c

ft max av max max av av
Inch sec inch inch inch sec sec inch inch fp. fps

6 . 229
c

12 .253
c

18 .333-9 .286 .030 .457

24 .384-2 .314 .035 .501

30 .251 .435-4 .344 .042 .577 4.95
e

36 .282 .484-4 .369 .048 .631 .280

42 .314 .49 .534-2 .401 .056 .743 5.0ge

48 . 320 . 51 . 559-4 . 415 • 057 . 808 . 362

54 . 351 .560-2 .426 .056 .851
5.18 .24

60 .378 .61 .608-1 .439 .061 .905 .402 .119 .020

66 .386 5.23 .22
72 .383 .72 .606-2 .452 .060 .996 .400 .124 .018

78 .405 .607-1 .467 .058 1. 063
5.29 .24

84 .433 .84 .631-3 .478 .056 1. 128 .479 .111 .014

90 .441 5.41 .25
96 .432 .95 .632-2 .501 .062 1. 269 .562 .097 .021

102 .472 .685-1 .511 .069 I. 304
5.45 .25

108 .474 1. 15 .711-1 .517 .067 I. 344 .600 .120 .019

114 .458 1.13 5.53 .24
120 .485 I. 21 .684-3 .531 .068 I. 396 .630 .118 .019

Notes: a. Point gage measurement d. Baeed on 600 to 2200 peake

b. Measured with atop watch e. Based on 50 values

c. Measured from pressure record (50 value.)

Unle88 noted otherwise I a.verage values and standard deviations were computed from
about 200 values.

Rough inlet data were ueed only to find the correction length (30 ft); they were not used
on the graphs.

Smooth inlet data for statlone 6 to 30 .how the effect of a .mooth inlet and were not
u.ed on graphs on which wave propertle. were plotted as a function of t/hn .

The integer. following the (hmax)max values indicate the number of peak. out of 200

peak. that were highe r than the value of (hmax)max indic ated.

I
1
i
I
1
I

i
r
r
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Table 5e Basic Data for Natural Roll Waves

So = .08429 h = .314 inchn

Rough Inlet Smooth Inlet (Correction to match rough Inlet = 12.5 ft)

Station n"- T
b

(hmax}max Ii °h T av °T Ii °h
min c °

ft max av max max min av c
inch sec inch Inch inch sec sec inch inch fps fps

6 . 329c

12 .327
c

18 .32S
c

24 .33S
c

30 .343c

36 .371
c

42 .459-5 .406 .026 .520 .197 .255 .018 6.08 .16
48 .364 .509-5 .426 .038 .520

54 .390 .535-2 .432 .045 .505 .211 .236 .024 6.17 .20
60 .405 .583-1 .452 .052 .537

66 .450 .56 .613 6.26 .21
72 .465 .55 .656-2 .501 .066 .649 .266 .203 .028

78 .472 .60 .732-1 .539 .071 .695

84 .504 .65 .756-1 .558 .073 .755

90 .488 .66 6.39 .25
% .521 .71 .757-2 .584 .080 .829d .323 .175 .033

102 .544 .810-2 .600 .077 .909
d

108 .569 .78 .811-1 .612 .080 .943
d

114 .600 .83 6.58 .26
120 .600 .93 .859-1 .646 .083 I. 027 d .411 .154 .040

Notes: a. Point gage measurement c. Measured from pressure record (SO values)

b. Measured with stop watch d. Based on 2000 peak.

Unle.s noted otherwise. average values and standard deviations were computed from
about 200 value ••

Rough inlet data were used only to find the correction length (12.5 ft); they were not used
on the graphs.

The integers following the (hmax)max value. indicate the number of peaks out of 200

peak. that were higher than the value of (hmax}max indicated.

t
I

i
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Table Sf Basic Data for Natural Roll Waves

------------_.._- ._--

S =.08429
o

h =.404 inch
n

Smooth Inlet (No correction to match rough inlet)

Station
ft

18

24

30

36

42

48

54

60

66

72

78

84

90

96

102

108

114

120

.631-1

.707-1

.706-2

.732-1

.785-5

.861-2

.859-3

Ii'
max
inch

.514

.554

.578

.590

.621

.646

.670

°h
max

inch

.044

.050

.053

.065

.080

.086

.088

T av
sec

.554

.565

.566

.582

.626

.643

.686

.735

.808

.865

.215

.236

.285

.320

Ii' .
mln
inch

.251

°h .
mln

inch

.050

c av
fps

7.27

°c
fps

.24

Notes: a. Measured from pressure record (50 values)

Unless noted otherwise, average values and standard deviations were
computed from about 200 values.

Correction length (zero) was found from rough inlet data (using point gage
and stop watch) and smooth inlet data (using point gage and stop
watch) which are not shown in table.

The integers following the (hmax)max values indicate the number of peaks

out of 200 peaks that were higher than the value of

(hmax)max indicated.



Table 5g Basic Data for Natural Roll Waves

So =O. lin hn =.210 inch

Rough Inlet Smooth Inlet (Correction to match rough inlet =24 ft)

Station (hmax)max h a h T aT h
min

I7hmin c 17 Khma"Jmax Ii I7h Tf
°T Ii °h c 17

ft max max av av c max max av min min av c
inch inch inch sec sec inch inch fps fps inch inch inch sec sec inch inch fDs fos

6 .ZI8&

IZ .ZZ3&

18 . ZZ7a
5.51d

Z4 .Z44& .315

30 .Z64& .305 .097 • 154c .027c
5.67d

36 .385-1 .311 .03Z .330 .107 .585-1 .410 .061 .5Z6 .2Z9 .111 .oz6

4Z .445-1 .339 .038 .364b .IZ6 .IZZ .OZ3 5.98e . Z3e

48 5.7ge • 1ge . 634-1 .451 . 069 . 635 . 272 • 105 . 023

54 • SZt-1 .385 .05t .4S9b
· 191 · 117 .019

60 . 660-Z .493 .071 .74Z .314

66 .6ZZ-1 .437 .057 . S7Zb
• Z33 · lIS .023 6.33 c

.27c

7Z ~.07e .Be

78 .6Z7-3 .47Z .066 • 68Sb
· Z70 · 118 .018 .732-2 .538 .076 .889 .4ZZ .099c .024c

Notes: a. Measured from pressure record (50 values) d. Based on ZO values

b. Based on ZOOO to ZZOO peak. e. Ba.ed on tOO value.

c. Based on SO values f. Baeed on t800 to 2400 peaks

Unless noted otherwise. average values and standard deviations were computed from about ZOO values.

The integers following the (hmax)max values indicate the number of peaks out of ZOO peaks that were

higher than the value of (hmax)max indicated.

00
00

\

I
I
I

i
i
I
I
I

I

I
I
I
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Table 5h Basic Data for Natural Roll Waves

S =0.1192 h = .409 inch
0 n

Rough Inlet

Station (hmaxlmax Ii a h T aT c
ft

max max av av
inch inch inch sec sec fps

18 .420a

24 . 527a

30 .437
a

36 .445a

42 .450 a

48 .454a

54 .468a
.387

60 .477a .387 .140

66 .504a .370 . 147

72 8.49
b

78 .727-1 .551 .068 .413 . 176

Notes: a. Measured from pressure record (50 value sl

b. Based on 20 values

Unless noted otherwise. average value 5 and standard deviations
were computed from about 200 values.

The integers following the (hmaxlmax values indicate the number

of peaks out of 200 peake that were higher than the

value of (hmaxlmax indicated.

I
~

,
'-
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Table 5i Basic Data for Natural Roll Waves

S =O. 1192 Rough Channel
a

h =. 199 inch h = .375 inchn n

Station (hmax)max Ii °h T
b ria

it
max max av max

inch inch inch sec inch

2 .213a

5 .220a

6 .222 a
.417

~-

8 .231 a I
.235 a L

10
t_

12 .243a
.426

18 .252a .417

24 .263a
.437

30 .307-2 .264 .018 .443

36 .310-3 .271 .018 .451

42 .334-2 .278 .024 .488 .461

48 .342-4 .290 .024 .546 .483 ~

~
54 .370-2 .302 .020 .607 \-

60 .330-10 .296 .019 .642

66

72 .370-1 .304 .017 .724

78 .373-1 .310 .019 .760 i
L
'=
i.:.

Notes: a. Point gage measurement
i-

b. Based on 600 to 800 peaks

f:
Unless noted otherwise, average values were computed from "Iabout 200 values.

The integers following the (hmax)max values indicate the number

of peaks out of 200 peaks that were higher than the

value of (hmax)max indicated.
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To express distance along the channel and Vlater depths in terrns of

the normal depth is suggested by the small amplitude theory (equation

3.20). Both of these theories indicate that the Froude number is an

important parameter. Therefore the generality of these dimensionless

terms for describing the development of natural roll waves can be

tested by changing h with F held fixed. For each channel slope in
n

the experiments, the value of h was changed by a factor of two while
n

the value of F changed slightly. Therefore if the experimental results

give unique relations for each slope, it is reasonable to assume that

these unique relations would apply at any h for the same F and S •
n 0

The effect of changing S with F held fixed will be considered in
o

Chapter s VI and VII.

The results for 11 /h vs.,f- /h are shown in figures 26-29. On
max n n

each figure the slope is fixed, and F is approximately constant. Be-

cause each graph tends to show a unique relation (except possibly

figure 28) for a two-fold change in normal depth, the use of h to
n

describe the development of h is justified. It is seen that the
max

general shape of the relations is the same in that the initial part of

the curve is concave upwa.rds followed by a concave downward part.

In no case did 11 reach a limiting value.
max

The dimensionless development relations for the average period

in the smooth channel are shown in figures 30-32. In the rough

channel only a few periods were measured and are not shown. The

period is seen to change very little for small,f- and then it increases

almost linearly to the end of the channel. This quasi-linear increase

in period is a result of wave overtaking.
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In figures 33 and 34 the development relations for h . and c ,
mln av

respectively, are shown. The value of h . reached a minimum value
mln

in the longer channel (S =.05011 and. 08429, figure 33a and b). The
o

wave velocity is seen to have increased linearly although there is a

definite Froude number dependence even for the small variations of

F on each slope. The dependence of c
av

/~ on F is predictable

from the periodic permanent theory. For example, figure 6 shows that

c /./iJC = 1 + F for the limiting ca se of vanishing wave length.
n

In figure 35 the development curves for the standard deviation of

h are shown. In contrast to 11 , G
h

attained practically
max max max

a constant value near the end of the channel. On the other hand the

standard deviation of the period, shown in figure 36, increased almost

linearly as the average period also did.

4. Frequency Distributions and Wave Shape

Typical frequency distributions of the four measured properties

h max ' T. h
min

and c are shown in figures 37 -40 for various stations

in one run. These are plotted on arithmetic-probability paper which

is designed such that a frequency distribution with a normal (Gaussian)

distribution plots as a str aight line. The properties hand care
max

well represented by a normal distribution, while the period approxi-

mately follows a normal distribution. The minimum depth shows a

definite departure from the Gaussian law at the low values.

Figure 41 is a typical pressure record in a region where the waves

were small. The variety of wave shapes and lengths is seen. In fig-

ure 14 the shape of shock waves is seen.
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V -D PERIODIC PERMANENT ROLL WAVES

1. 130 ft Channel

As mentioned in Section IV -B there was one periodic permanent

wave run in the 130-ft channel. The conditions for this run were:

T = 3.00 sec, S =.01942, h =.780 in., and c = 5.70 fps. The
o n

measured wave profile and velocity are shown in figure 43 along with

the theoretical solution for the profile for F = 2. 65.and a dimensionless

period (T') of 1.30. The wave profile agrees very closely with the

theoretical solution, and the measured velocity is slightly higher than

given by the theory. Figure 42 shows a definition sketch for wave

profiles. The length of the shock front 0.. - (xl )max) was not measured

in the run in the l30-ft channel, and was assumed to be negligible as

shown in figure 43.

2. Steep Channel

Wave shapes and velocities for periodic permanent waves in the

steep channel were measured by methods explained in Chapter IV.

Table 6 contains the F and T I values for each run, and the results

for h , h . , and c in dimensionless form. Because these threemax mln.

properties are of prime interest, they are plotted in figure 44 along

with the theoretical relations. In plotting the experimental points on

figure 44, the same syYIlbol was used for all data obtained for a giveno

slope. lfowever-for·all.,.slope-s; except .0501l,-there was one run at a

higher normal depth, and thus a higher F, than the other runs at the

same slope. In most cases-data for this onerunaremt consistmtwithtlat of

other runs, which can be attributed to the slightly. higher value of F.
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Fig. 42. Definition sketch for coordinates of water­
surface profiles for periodic permanent
roll waves
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Fig. 43. Graph of measured and theoretical water­
surface profile for· periodic permanent roll
waves in nO-it channel, F=2.65, T'=1. 3D,
S =.0194o



Table 6

Basic Data for Periodic Permanent Roll Waves

So Channel h F T' c /1fiIC h /h. h /h h . /hn n max mln max n mln n
inch

· 05011 Smooth .314 3.71 1. 08 5. 18 1. 72 1. 30 .76

.05011 Smooth .314 3.71 1. 64 5.27 2. 15 1. 46 .68

.05011 SInooth .314 3.71 2. 14 5.36 2. 60 1. 63 .63

.08429 SInooth .208 4.63 1. 63 6.4,6 2.35 1.54 .66

.08429 SInooth .314, 4.96 2.50 7.01 - 1. 91 -

.08429 SInooth .208 4,.63 2.89 6.79 3.58 2.00 .56

.08429 Smooth .208 4.63 4.07 7. 15 4.37 2.35 .54

.08429 Smooth .208 4.63 4.53 7.24 4.66 2.49 .53

· 1192 SInooth .210 5.60 2.25 7.74 3.42 1.78 .52

· 1192 SInooth .210 5.60 3.55 8.24 4. 96 2.31 .47

· 1192 SInooth .308* 5.90* 4.25 8.82 5.49 2.65 .44

· 1192 SInooth .210 5.60 5. 19 8.76 6.38 2.82 .45

· 1192 Rough · 199 3.74 1. 98 5.43 1. 91 1. 34 .70

· 1192 Rough · 199 3.74 3.73 5.73 2.30 1.54 .67

· 1192 Rough .375 4.04 4,. 19 ' 6.14 2.05 1. 55 .75

· 1192 Rough · 199 3.74 5.64 5.95 2.72 1. 68 .62

*Normal depth and Froude NUInber interpolated from Ineasured values at this slope.

­o
...0
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This slight discrepancy should be considered when examining figure 44.

The values of F used for the theoretical relations correspond to the F

for the majority of the data points at a given slope as can be seen from

table 6. Note that the rough channel (S =.1192, h =.199 in. ) and
o n

the smooth channel (S =.05011, h =.314 in. ) had an F of about 3. 7.
o n

It is seen that for all three properties there is a consistent experi-

mental relation for each F which is similar to the theoretical relation.

For h . and c the experimental points are slightly above the theo­
mln

retical curve. For h the measurements are considerably lower
max

than the theoretical values and for a smooth channel this discrepancy

increases as the Froude number increases. The rough channel

relation is even lower than the smooth channel relation for the same F.

In table 7 all of the data obtained on wave shape are presented.

On figure 45 a few of these data are plotted which serve to show the

significant trends. Of particular interest is the length of the shock

front which was as sumed to be negligible in the periodic permanent

wave theory.

V-E OBSERVATIONS ON INDIVIDUAL WAVES

All of the data on natural roll waves presented above have been

obtained by measuring properties at one station, then repeating the

measurements at other stations at a later time. These measurements

were combined to give the behavior of a particular property as a func-

tion of distance along the channel. To get some information on how the

properties of an individual wave changed with distance along the flume,

pressure records taken at four stations simultaneously were examined.



112

Table 7

Observed Wave 5hape for Periodic Permanent Roll Wave.

5 = .05011 T' = I. 64 50 = .050 II T' = 2. 14 50 = .08429 T l
:: I. 63

0

h/h xl/). x2 /). h/h xl/). x
2

/). h/h xl/). x
2

/).
n n n

.752 .203 I. 00 .640 .048 I. 00 .664 .065 I. 00

.832 .349 I. 00 .687 .154 I. 00 .711 .149 1. 00

.911 .483 I. 00 .752 .298 I. 00 .760 .256 I. 00

.990 .571 1.00 .832 .436 I. 00 .880 .425 .982

I. 070 .648 I. 00 .990 .599 I. 00 1.000 .554 .982

I. 150 .720 I. 00 I. 150 .715 I. 00 I. 120 .652 .982

I. 2Z9 .786 .99Z 1.308 .798 .987 I. Z40 .732 .973

I. 308 .821 .983 I. 387 .825 .980 I. 361 .806 .964

I. 387 .879 .949 I. 467 .873 .975 I. 481 .871 .911

I. 467 .925 .932 I. 549 : 914 .957

I. 6Z9 .930 .934

S =.08429 T'=2.89 S = .084Z9 T'=4.07 S =.08429 T' = 4. 53
0 0 0

h/hn xI/). xZ/). h/h xl/). x
2

/). h/h xI/). x
2

/).
n n

.644 . Z64 I. 00 .644 .348 I. 00 .582 .211 1. 00

.764 .464 I. 00 .764 .5Z6 I. 00 .630 .336 I. 00

1.005 .633 I. 00 I. 005 .689 I. 00 .750 .554 I. 00

I. 245 .743 .995 I. 245 .771 .996 .870 .650 I. 00

I. 486 .823 .990 I. 486 .816 .989 .990 .708 I. 00

I. 726 .864 .970 I. 726 .865 .984 I. 231 .779 I. 00

I. 846 .900 .955 I. 966 .899 .978 I. 471 .8Z8 .994

2.207 .928 .957 I. 712 .864 .987

2.327 .947 .954 1. 95Z .895 .98Z

2. 192 .927 .972

2.313 .946 .966

2.433 .952 .953
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Table 7 (continued)

Observed Wave Shape for Periodic Permanent Roll Wave.

5
0

=.1192 T'=Z.Z5 5
0

=.1192 T' = 3.55 5 =.1192 T' = 4.Z5
0

h/hn xllA xZ/A h/hn xiIA xZ/A h/h xiIA xZ/An

.5Z0 .017 1. 00 .481 .059 1. 00 .5Z3 . IZ5 1. 00

.566 .095 1. 00 .5Z9 .15Z 1. 00 .603 .Z60 1. 00

.615 . Z 10 1. 00 .576 .30Z 1. 00 .685 .334 1. 00

.758 .416 1. 00 .648 .412 1. 00 .847 .580 1. 00

.877 .5Z2 1. 00 .767 .533 1. 00 1. 010 .688 1. 00

.995 .606 1. 00 .886 .600 1. 00 1. 332 .772 .988

1. 113 .684 1. 00 1.005 .683 1. 00 1. 658 .8Z4 .980

1. 352 .774 .986 1. 124 .723 1. 00 1. 98Z .880 .976

1. 470 .830 .982 1. 243 .764 1. 00 2.305 .924 .956

1. 588 .867 .968 1. 48 I .815 1. 00 Z.635 .934 .936

1. 710 .901 .931 1. 719 .847 .985

1. 8Z7 .915 .920 1. 838 .869 .979

1. 957 .887 .968

2.076 .911 .957

Z.195 .922 .945

Z.314 .933 .939

S =.1192 T' = 5. 19 S =. 1192
Rough T'=1. 98 S =.1192

Rough T'=3.73
0 0 Channel 0 Channel

h/hn xilA x 2 /A h/h xiIA x2 /A h/h xiIA xZ/A
n n

.433 .009 1. 00 .713 .024 1. 00 .677 .027 1. 00

.481 .06Z 1. 00 .814 .225 1. 00 .728 .117 1. 00

.529 .198 I. 00 .864 .405 1. 00 .778 .210 1. 00

.648 .357 1. 00 .990 .599 .996 .828 . 3Z I .994

.767 .598 1. 00 1. 040 .718 .991 .878 .444 .989

.885 .662 I. 00 1. 120 .794 .989 .978 .617 .983

1. 124 .751 .988 1. 170 .868 .981 1. 080 .717 .983

1. 361 .800 .988 1. Z22 .893 .963 1. 181 .818 .989

1. 719 .856 .988 1. 272 .933 .958 1. 283 .854 .980

I. 905 -- .984 I. 322 .952 .953 1.383 .912 .973

2. 195 .903 .976 I. 433 .944 .978

2.435 .919 .969 I. 483 .953 .976

2.550 .935 .965 I. 533 .959 .965

2.665 .948 .961 1.584 .955 .956

2.735 .950 .953

2.910 .956 .957
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Table 7 (continued)

Observed Wave Shape for Periodic Permanent Roll Waves

S =. 1192
Rough T'=4.19 S =. 1192

Rough
T'=5.64

0 Channel 0 Channel

h/h x1/A x2 /A h/h x
1

/A x
2

/A
n n

.787 . 149 1. 00 .657 .077 1. 00

.853 .289 1. 00 .707 . 122 1. 00

.920 .466 1. 00 .758 .261 1. 00

.987 .605 1. 00 .808 .326 .994

1. 120 .755 1. 00 .858 .459 .992

1. 253 .843 .993 .908 .590 .992

1. 320 .894 .990 1.008 .733 .988

1.388 .933 .984 1. 109 .806 .989

L 455 .942 .968 1. 209 .843 .985

1. 520 .958 .964 1. 310 .888 .982

1. 410 .907 .983

1. 510 .942 .980

1. 610 .959 .960
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Fig. 45. Graphs of measured water-surface profiles for periodic
permanent roll waves
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In figure 46 pressure records for stations 42, 54, 66, and 78 are

shown. At station 42 twelve waves are numbered and these same waves

are identified at each station. From a dynamic calibration and this

pressure record, the values of h /h for these twelve waves were
max n

found and are listed in table 8. The important role of the overtaking

process is clear from this table and figure 46.

In order to examine the behavior of the wave velocities when waves

overtake each other, the simultaneous pressure records for stations

60, 66, 72, and 78 presented in figure 47 were examined. From these

records one can see three cases in which one wave overtook another.

The calibration for this pressure record was not obtained and is indeed

not required to measure wave velocities. In table 9 the measured

velocities for the peaks delineated in figure 47 are tabulated.

V-F ADDITIONAL DATA - LABORATORY AND FIELD

1. Ghambarian Laboratory Data

Ghambarian's (13) experiments were discussed briefly in Section

II-C. He presented his results for h on a graph of h /h vs.
max max cr

S t/h where h is the critical depth which for a rectangularo cr cr

channel is

h =(q2/ g )1/3
cr (5. 3)

where q is the discharge per unit width. Ghambarian found that the

value of h /h attained a constant value after a sufficient distance.max cr

Because the value of S is not indicated on his graph (h /h vs.
o max cr

S t/h ), this distance cannot be determined. From his graph it waso cr



Fig. 46. Pressure records for a train of 12 shock-type roll waves at
stations 42, 54, 66, 78, for h =.210 in. ,S = .1192, rough
. 1 t n 0in e

............
-J
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Table 8

Values of h /h For Twelve Consecutive Natural Waves
max n

Peak No. Station 42 Station 54 Station 66 Station 78

1 1.98 } 2.26 2.52 2. 18
2 1. 63

3 1. 85 1. 77} 2. 16 2.77
4 1. 79 1. 64

5 2. 18 1. 91 1..99 1. 97

6
1. 36 }

7 1. 25 2.40 2.28 2.23

8 1. 47

9 1. 85 2.01 2.25 2.34

10 1. 82 }
1. 96 }11 1. 30 2.37 2.50

12 1. 96 1. 87



a) b) c)
..........
...0

Fig. 47. Pressure records for shock-type roll waves at stations 60, 66, 72, 78, for hn =. 210 in.,
5 0 =.1129, smooth inlet, showing 3 overtakes: waves land 2 in fig. 47a; waves 3 and 4
in fig. 47b; and Waves 5 and 6 in fig. 47c



Table 9

Wave Velocities :nuring Overtaking

Fig. 47a Fig. 47b Fig. 47c

leading following leading following leading following
Stations wave -1 wave -2 wave-3 wave-4 wave-5 wave-6

.

60-66 5.90 fps 7.30 5.90 6.89 6.01 6.59

66-72 6. 77 (combined) 6.26 7. 15 6. 15 6.86

72-78 6. 81 (combined) 7.04(combined) 6. 17 7.50

....
N
o
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Possible to read off three of these maximum values of'fi /h. Tomax cr

convert these to values of h /h the relation,max n

h /h =F
2

/ 3 (5.4)
cr n

was used. This follows from the definition of h and continuity
cr

(q =u h). These three values are shown in table 10. The maximum
n n

F of 11.58 can probably be assumed to correspond to the maximum

channel slope .of .86 (channel length of 10 meters), but the slopes for

the other two values are not known.

Table 10

Maximum Average Wave Depths After Ghambarian

·¥aximum Maximum
. 'value:of value of

Fa li -.lh F hcr/hn h /h
max cr max n

14.6 0 .75 3.82 2.44 1.83

50.1 " .74 7.08 3.69 2.73

134.0 .' 0'65 11.58 5.12 3.33

All the data points were read from a graph of h /h vs. -t/h
max cr cr

in the paper by Ghambarian and MayUian (14) where the results for

S = O. 10 were presented. These values of h /h and -t/h were
o max cr cr

converted to values of h /h and -t/h by using equation 5.4. Formax n n

this slope the channel was 60 meters long and the cha:p.nel roughness

was reported in terms Manning "n" values. For a n of .011 the F was

3.96, and for a n of .015 the F was 3.30. These values of F are about

the same as for the smooth channel used in this investigation for a
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slope of .05011. Thus it can be deduced that the channel Ghambarian

used for the runs at a slope of O. 10 was rough.

The values of h Ih are shown in figure 48 along with the experi­max n

mental relations obtained in this study for values of F comparable to

those used by Ghambarian. Although some of the points tend to show

the same trend as the present stUdy, there is considerable scatter.

Some of the data points fall below the normal depth which is physically

impossible for a reservoir type of inlet as used by Ghambarian (and in

the present study).

Ghambarian reported that he measured the frequency distributions

of maximum depth, period, wave velocity, and wave length, and that

they obeyed the normal distribution law.

z. Field Data

On April 16, 1965 measurements on roll waves were obtained by

the Los Angeles County Flood Control District (LACFCD) in the

Santa Anita Wash £lood-contro1 channel. The water entered the channel

over a l60-ft wide spillway shown in figure 49. The discharge was

determined from measured velocities on the spillway crest during the

test. At about 5000 it downstream of the spillway, observations on

maximum depths were obtained by using gages painted on the side of

the channel (see figure 1) to visually estimate values of h • Wavemax

periods were also determined by measuring the time for waves to travel

a known distance with stop watches. The data for hand T weremax

obtained for groups of about five consecutive roll waves. Therefore

the values of hand T in table 11 are averages for five waves.max av
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Negative No. 7805

Fig. 49. View of inlet to Santa Anita
Wash. Arcadia. California.
discharge about 210 cis



Table 11

Summary of Santa Anita Data

At measurin.g station Weighted value s

Discharge
n T nmax/hn T'(= S T iiJh::) F F t/hmax av o av n n

cfs ft sec

90 .72 14,.5 2.36 3.74 3.40 3.93 18,700

94· .80 16.3 2.56 4. 16 3.4Z 3.95 18,300

96 .76 12. 1 2.40 3.07 3.42 3.95 18,000

170 .94 15.6 2. 11 3.34 3.63 4. 18 12,800

186 .83 8.2 1. 76 1. 71 3.67 4.22 12,200

193 .94 13.8 1. 96 2.84 3.69 4.24· 11,900

234 .99 9.8 1.84 1. 90 3.76 4.33 10,600

262 1. 04 10.5 1. 80 1.98 3.80 4.37 9,900

268 1. 09 9.3 1.87 1. 75 3.81 4.38 9,800

272 1. 00 8.5 1. 70 1.57 3.81 4.39 9,700

h values are measured to within about. 05 ft.
max

....
N
\J1
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In table 12 the channel slopes and widths from the downstream end of

the spillway to the measuring station are listed. The channel has one

bend, station 1588 ft to 2007 ft, which is visible in figure 1. The data

from this study are contained in a LACFCD. file report which was

kindly made available.

The normal depths for each discharge were calculated using a

Manning roughness coefficient (n) of .010. This value was derived from

float velocities and water depths obtained from motion pictures taken

during the test. These surface velocities were corrected to mean

velocities by assuming a logarithmic velocity distribution. Roughness

coefficients were determined in this manner only when the water depth

was practically constant, so that the flow was essentially uniform.

The average n value of .010 was based on 41 sets of observations.

The slope of the channel, and thus the normal depth and Froude

number for a given discharge, varied from the spillway to the measur-

ing station. Each value of t/h listed in table 11 was obtained by
n

summing the values of t/h computed for each reach of constant slope
n

between the inlet and the measuring station. However because the

h value s were observed only at the measuring station, the value
max

of h in h Ih was calculated using S =.0251. The dimensionlessn max n 0

period was calculated using the values of Sand h at the measuring
o n

station also. Table 11 includes a Froude number for each discharge

that was computed as a weighted average of the values of F for each

reach of constant slope. The weighting factors were taken as pro-

portional to the length of the reaches of constant slope.
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Table 12

Slopes and Widths for Santa Anita Channel

Station Length Width Slope
it ft ft S

0

0-508 508 139.7 to 72 .0242

508-838 330 72 to 28 .0415

838-1588 750 28 .0415

1588-2074 486 28 .0354

2074-4169 2095 28 .0332

4169-5044 875 28 .0251
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In figure 50 the data for the Santa Anita Channel are shown as a

graph of h Ih against ~/h along with the laboratory results formax n n

a comparable F. Although the points do not fall on the laborato ry

curve, the growth rate is roughly the same. For periodic permanent

waves I it was shown that h Ih is a function of T I for a given F.
max n

It will be shown in the next chapter that this same concept can be

carried over to natural waves if h is replaced by hand T bymax max

T • Thus in figure 51 the field data are plotted on a graph of
av

h Ih vs. T I along with the theoretical and laboratory relations
max n

for comparable values of F. Although this plot indicates the same

trend as the laboratory results and theory, the field data give slightly

higher values of 11 Ih.max n
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CHAPTER VI

DISCUSSION OF RESULTS

VI-A DEVELOPMENT OF NATURAL ROLL WAVES IN TERMS OF
DISTANCE ALONG CHANNEL

1. Average Maximum Depth and Average Period

The development curves for h shown in figures 26-29. indicate'max

that a unique relation exists between h Ih and t/h for each Froudemax n n

number. The effect of the Froude number on these development curves

is seen in figure 52 where all the h development curves for themax

smooth channel are shown. For values of h Ih above about 1. 2,max n

the growth rate (slope of the curve) at a fixed average maximum depth

increased as the Froude number increased. Also a given value of

h Ih occurred at a smaller value of t/h as F increased. In othermax n n

words, as the Froude number increased roll waves developed closer

to the inlet and grew at a faster rate in terms of distance along the

channel.

The curvature of the h development curve is initially concavemax

upwards and finally concave downwards. On the concave upward por-

tion, the roll waves have small amplitudes and have not yet acquired

the steep wave front. Recorder traces of waves of this type can be

seen in figure 41. Eventually all the waves will "break" and i.t was

determined from pressure records that in the smooth channel this

occurred at values of h /h of about 1.18 at the .05011 slope, 1.30max n

at the .08429 slope, and 1.34 at the .1192 slope. These values are
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in the vicinity of the points of inflection of the development curves in

figure 52. Thus the part of the curve that is concave upward pertains

to small amplitude waves with a continuous water surface, and the

part that is concave downward pertains to waves with a discontinuous

water surface (shock waves).

The development curves for the average periods (figures 30-32)

show a constant period portion followed by a transition to a practically

linear period increase with length. The point on these curves where

the period starts to increase from the initial value is where the wave

overtaking begins. By examining the h development curves, it is
max

seen that this overtaking begins after shock waves have formed and an

appreciable amount of growth has taken place. For example at a slope

of .05011 overtaking begins at about t/h =3000 which corresponds
n

to h /h = 1.25, whereas shock waves formed at h /h =1. 18max n max n

approximately. This growth without overtaking will be called natural

growth, and the phase of the development in which the average period

does not change will be referred to as the initial development phase.

Downstream of the initial development phase the observed average

period was practically a linear function of distance. To understand

why this should be, one would have to investigate the details of the

movement of trains of shock waves that have a normal distribution of

periods and velocities. To complicate the problem further, the

velocities change appreciably during and immediately after an overtake.

An inve stigation of this type has not been made. One consequence of

the observed linear function for the average period, is that the average
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frequency of overtakes (number per unit thne), w in a reach of
o

channel b.t can be expressed as,

Ui =a b.-t/ [(T ) x (T )dJo av u av
(6. 1)

where a is the slope of the T vs. t relation (T =at + b), and
av av

subscripts u and d refer respectively, to the upstream and downstream

end of the reach b.t in question. This relation follows directly from

the continuity of wave peaks where the overtaking process acts as a

sink for wave peaks. If -t is now measured from the point of the linear

increase (i. e. b == 0), and b.-t is small compared to t, equation 6. 1

can be written,

(6.2)

or the frequency of overtaking varies inversely as the square of the

distance from the point where overtaking begins.

It has been shown that most of the experimentally determined

development curves for hand T r described a unique relation for
max

each value of F and S • It is reasonable to expect that these relationso

will be valid for any wide rectangular channel with equivalent inlet

conditions and the same value of F and S as was used in this study.o

However for channels with the same value of F but on a different slope.

the relations found in the laboratory may not apply. The effect of

channel slope on the h /h vs. t/h relation is seen by comparing
max n n

the re suIts for the smooth channe1 at a • 05011 slope (figur e 26), and

the rough channel at a • 1192 slope (figure 29) since these two sets of

data are for the same range of Froude numbers. One obvious
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difference between these two relations is that in the rough channel

roll waves developed to a given value of h Ih at a smaller valuemax n

of t/h than in the smooth channel. Another difference is that for a
n

given h Ih, the growth rate of the shock waves (h Ih > 1.4maxn . max n

approximately) was larger in the smooth channel than in the rough

channel. The effect of channel slope on the development of small

amplitude waves (from which shock waves are formed) will be con-

sidered in Part 3 of this section. The effect of channel slope on the

growth rate of shock waves will be considered further in Chapter VII.

2. Small Amplitude Roll Waves and the Linear Theory

The linear theory in Chapter ill considered the motion of a small

amplitude sinusoidal perturbation on an otherwise undisturbed uniform

flow of depth h. The growth rate of the perturbation was shown to be,
n

a'll 10 (.t/h ) = T} (211" C.I C Y) (S IF2)
max n max 1 r 0

(3.38)

where the amplification factor (211"C.1 C Y) is a function of F and Y
1 r

(figure 2), and T} is the amplitude which increases exponentiallymax

with distance (equation 3.39). If this theory is valid as a simplified

model for the motion of small amplitude natural roll waves, it is

expected that the observed average wave lengths would correspond to

values of Y indicating a maximum amplification factor (F fixed) on

figure 2. Furthermore it is expected that the observed growth rates

would increase with the Froude number, and thus, if the initial dis-

turbances are of the same size, roll waves are expected to occur at

increasingly smaller distances from the beginning of the channel as
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the Froude number is increased. This interpretation of the theory

was given in Section III-A, and follows directly from equation 3.38

and figure 2.

Figure 53 shows portions of all the development curves for hmax

for which a pressure record was used to obtain the values of h ofmax

the small amplitude waves. The term small amplitude will be used

for waves that have not developed into shock waves. Therefore small

amplitude waves correspond to the parts of the development curves for

h that are concave upward (see Part I of this section). Since over-
max

taking did not start until after shock waves were formed, small ampli-

tude waves are only part of the initial development phase. Values of Y

were calculated for each of the six runs shown on figure 53 using the

average wave length for the values of).. This average wave length was

computed as the product of the average period, which did not vary

during the initial development phase and the wave velocity. These

computed values of Yare shown in table 13. The observed average

wave lengths were in the range of maximum growth rate as can be

seen from figure 2. Furthermore, as F was increased the observed

Y decreased which follows the trend indicated on figure 2. However

this qualitative agreement is not a good criterion for judging the appli-

cability of the small amplitude theory to natural roll waves because of

the relatively wide range of values of Y near the maximum growth rate

as seen on figure 2.
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Table 13

Observed Dimensionless Wave Lengths of
Small Amplitude Natural Roll Waves

S A
S F y=_o_

0 F 2 hn

.05011 - 3. 71 .475

.05011 3.81 .460

.08429 4.96 .405

.08429 5.06 .377

.1192 5.60 .370

• 1192 5.98 .316

The small amplitude theory predicts that the amplification factor

should increase as the Froude number is increased. In fact, for the

range of value s of F and Y in table 13, the amplification factor should

have varied by a factor of about 2.5. This factor can be estimated

from figure 2. The observed amplification factors for each run were

found by plotting loglO(h /h) vs. l..,/h , fitting a straight line tomax n n

the plotted data points, and calculating the amplification factors from

the slope of the straight line and the known values of Sand F. Theo

data points indicated exponential growth for values of Ii /h betweenmax n

about 1.05 and 1. 20. Except for the run with F =4.96, the amplifica-

tion factors were all about the same (ratio of maximum to minimum

value was about 1.2), and did not show any dependence on the Froude

number. In addition, the measured amplification factors were all less
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than the predicted values from the theory. This of course means that

the growth rates. for a given value of h /h, were about the same
max n

for all the runs except one. However it was found that roll waves did

occur at increasingly smaller distances from the inlet as the Froude

number was increased (e. g. with Ii /h = 1. 1 in figure 53). Coupl­
max n

ing this fact with the observed trend of the growth rates (for h /h ~
max n

1.05) leads to the conclusion that roll waves did not begin to develop at

the beginning of the channel, but began to develop at increasingly smal-

ler distances from the beginning of the channel as the Froude number

was increased. It must be noted that values of h /h below aboutmax n

1. 05 may not be very indicative of the actual magnitudes of the roll

waves, if there were any, because of the distrubances on the flow which

exist even for a uniform flow. Thus to delineate a point at which roll

waves began to develop is difficult, but for purposes of discussion the

location corresponding to Ii /h = 1.1 can be taken as the one wheremax n

roll waves of "significant size" appeared.

As noted above the small amplitude theory does not predict the

observed trends in the growth rates. However the theory did predict

that waves of a given size would occur at increasingly shorter dis-

tances from the beginning of the channel as the Froude number was

increased providing the initial distrubances were of the same size.

Thus by considering only the location of roll waves of significant size.

the theory predicts the observed trend as F was varied.
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3. Effect of Channel Slope on Small Amplitude Natural Roll Waves

In Sec t i.o n V I - A. 1. it was concluded that the functional

relationships between h /h and t/h determined from the experi-max n n

ments in the laboratory channel should be valid for any wide rectangu-

lar channel with the same values of F and S that were obtained in the
o

laboratory. The effect of changing S with F held fixed will be
o

considered now.

The small amplitude linear theory predicts that the growth rate

increases as S increases with F fixed. This is seen from equation
o

3.38. The linear theory also predicts that the growth rate increases

as the Froude number increases (see Sec t ion V I - A. 2 •.), but this

was not observed for the natural roll waves. Therefore on the basis

of the linear theory alone, it is not justified to assume that there will

be an effect of channel slope on the growth rates of small amplitude

natural roll waves.

Unfortunately the experimental evidence concerning the slope

effect is inconclusive. For the smooth channel at S = ..05011, and
o

the rough charme1 at S =.1192, the values of F (for h of about. 3 in.
o n

and.4 in.) ranged from about 3.7 to 4. O. so that differences in the

h /h vs. t/h relations cannot be due to a Froude number effect.max n n

In figures 26 and 29 the development curves for h /h are shown,
max n

and on figure 48 both of the curves are shown. In the rough channel

the values of h /h were never less than about 1.1, even very closemax n

to the inlet, which can be seen in figure 29. However for the smooth

channel the minimum values of h /h were less than 1.05 (figure 26).
max n
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Therefore it can be said that the initial disturbances were larger in

the rough channel than in the smooth channel, with the result that roll

waves appeared at smaller values of t/h in the rough channel than in
n

the smooth channel (figure 48). For a rough comparison of the growth

rates of the small amplitude waves figure 48 can be used. It appears

that the growth rates were not greatly affected by the channel slope,

however the range in h Ih for small amplitude waves (i. e. 1. 1 tomax n

1. 2 approximately) in the rough channel was not large enough to reach

any definite conclusions. It is important to note that for h Ih > 1. 2max n

the growth rates are clearly less on the larger slope. This slope

effect on shock waves will be considered in Chapter VII. In summary,

roll waves developed at smaller values of t/h in the rough channel
n

than in the smooth one, but this was primarily because the initial

disturbances were larger than in the smooth channel. The effect of

channel slope on the growth rates of small amplitude waves could not

be ascertained from the experimental results because of the differences

in the initial disturbances.

Near the inlet of the rough channel the value of h Ih was about
max n

1.1, whereas in the smooth channel, for all slopes, the initial values

of h Ih were less than 1.05 at the locations where growth began.max n

This can be seen in figures 26 to 29. Table 4 shows that the discharge

in the rough channel at F = 4.04 was about the same as in the smooth

channel at F = 3.81. It is reasonable to assume that the flow pattern

in the inlet box was about the same for about the same discharge. The

primary difference between the rough and smooth channel at F =3.7



141

to 4.0, besides the slope, was the texture of the channel bottom and

sides. In the smooth channel a 6-in. length of screen was placed on

the bottom (see Section V -A) so that the downstream end was. 30 ft

upstream of station O. O. The purpose of this screen was to eliminate

the laminar. boundary layer. In the rough channel the sand grains

were fixed to the bottom and sides of the channel over the tota11ength

of the channel, and also to the sides and bottom of the inlet for the

portion extending 8 inches upstream of station 0.0 (see figure 11).

It is reasonable to suspect that the larger initialdisturbances in

the rough channel were due to the influence of the sand grains on the

structure of the turbulent flow near the inlet. These sand grains were

more than four times larger than the thickness of the laminar sub1ayer

(figure 22), so that eddies generated by the sand grains had an influence

on the flow as evidenced by the increased friction factors in the rough

channel. It seems reasonable that the influence of these eddies could

have extended to the water surface, resulting in disturbances to the

water surface. These disturbances would have resulted in larger

values of h /h than generated in the smooth channel.. max n

For the experiments in the rough channel with h =.375 in., the
n

value of h /k was only about 16, where k is the geometric mean size
n

of the sand (.595 mm). As the value of h Ik is increased, it is
n

reasonable to believe that the influence of the eddies (generated by the

sand grains) on the water surface will be less. Therefore in a rough

channel with hnl k much larger than 16, but otherwise equivalent tCi the

laboratory rough channel (i. e. F of about 4.0, S of about .12), roll
o
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waves would probably not develop as close to the inlet (in terms of

t/h ) as they did in the rough channel in the laboratory.
n

4. Frequency Distributions

The development curves for the standard deviation of hand T,max

shown in figures 35 and 36, indicate that a unique relation exists

between qh and ~Jhn and between aT and ~Jhn for each Froude
max

number. Although h increased over the entire length of themax

its standard deviation tended to reach a constant value at about

-t. = 8,000 h. The standard deviation of the period increased linearly
n

to the end of the channel.

The frequency distributions for h were found to be approxi-
- max

mated by a normal distribution (figure 37). However, these distribu-

tions were measured only after shock waves had formed and only

average values, h , were obtained for the small amplitude waves
max

before shock waves appeared. To measure h for shock waves,
max

zoo wave crests were observed at each setting of the wire gage and

the number of crests that struck the wire was recorded. This was

continued until the wire was high enough so that no crests (out of ZOO)

struck the wire. Thus the maximum recorded value of h would
max

appear at 0.5 percent on the cumulative frequency scale if only one

crest out of ZOO struck the wire. This maximum value can also be

expressed as,

(h ) =h + 2.58 ahmaxmax max max
(6.3)
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by using the properties of a normal distribution. It is clear that if a

larger number of crests had been used ·at each wire gage setting, the

maximum recorded h may have been higher, but it is not correctmax

to assume that these higher values (with frequencies less than 0.5 per-

cent) would also follow the normal distribution. For this reason one

is not justified in merely extending the relations in figure 37, for ex-

ample, to obtain values of h with lower frequencies than 0.5 per-max

cent. For all practical purposes, the value from equation 6.3 repre-

sents the maximum value of h at a given station.max

The frequency distributions for T (figure 38) show some deviation

from the normal law at the small values of T. In figure 38 the mini-

mum T was the same at all three stations. This merely means that

the minimum value of T corresponded to the smallest distance between

two peaks that could be recognized on the pressure record. If the

crests had been closer together, they could not have been distinguished

as two separate crests. The largest value of h . in figure 39 is about
mln

the same for all three stations. This is because h . was defined to be
mIn

less than the average depth (as estimated by eye from the pressure

record, see Section IV -D) which is about equal to the normal depth.

Thus the maximum values of h . for all three stations shown in fig­
mIn

ure 39 were slightly less than the normal depth. The curves in figure

39 show that at each station the small values of h . deviate froIn the
Inln

normal distribution indicated by the large values. At the low values of

h . a relatively large percentage of the values were in a given interval
mIn

as compared to the high values. As a result the frequency distribution

for h . was skewed towards the small values and the mean was less
mIn

than the median.
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VI-B DEVELOPMENT OF NATURAL ROLL WAVES IN TERMS OF
WAVE PERIOD

In figure 44 the results of experiments on the periodic permanent

roll waves were presented. It was shown that there was a consistent

relation between the dimensionless measured properties (h , h . ,max mln

and c) and the dimensionless period for a given Froude number and

channel slope. Comparison of the experimental and theoretical results

shows the measured wave velocity and minimum depth to be slightly

higher, and the maximum measured depth to be considerably lower

than given by the theory. The deviation of the maximum depth from

the theory increases with the Froude number. In the l30-ft channel

the theory and experiments were in very close agreement (figure 43).

In the next chapter a modification to the periodic permanent theory will

be made which will greatly reduce the discrepancy for the maximum

depth.

Thus far, natural roll waves and periodic permanent roll waves

have been treated independently. However, it was found that the

average maximum depth of a developing natural roll wave train can be

described in the same manner as a periodic permanent roll wave train.

This is shown in figures 54-57 where h for both natural and
max

periodic waves is plotted as a function of TI. In this manner of pre-

sentation no correction for inlet condition is required, as it was for

the development curves expressed as functions of ~/h. The natural­
n

wave data for h =. 2 in. that indicated a smooth -inlet effect (see
n

Section V -A) are included. The line drawn through the data points is

based primarily on the periodic permanent wave data, especially at the

low values of TI.
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The data for the natural waves indicate that for small T I and

h the depth h increases without a change in T j. This indicates
max max

that growth occurs without overtaking. As already noted above this

kind of growth has been termed natural growth. and the development

without overtaking has been termed the initial development phase.

During this i.nitial development phase the small amplitude waves form

shock waves. Following this initial development phase. the natural-

wave data show a gradual tr.ansition to the curve defined by the periodic-

wave data. In this transition phase the shock waves were overtaking

and the period was increasing. In the final development phase the

periodic and natural waves follow the same relation. The values of

h Ih at the end of the transition phase were about 1.4 formax n

s =.05011, 1.7 for S =.08429. and 1. 8 for S =.1192. Figure 57
000

shows that data for natural waves in the rough channel were n-ot obtained

in the transition phase, but the minimum value of Ii /h that was inmax n .

the final development phase was about 1.4.

In the final development phase the average maximum depth is a

well-defined function of the period. For periodic waves the period and

maximum depth were fixed for a given run. and the maximum depth

could only be increased by increasing the period. For natural waves

the average maximum depth increased along the channel for a given

run. and this increase was found to be related to .the.average period by'

the same relation'found for periodic waves.' This implies that the domin-

ant mechani~m by which "natural waves grow in this final phase is over-

taking. which is the p.ro.c.ess by which the ave.rage period increases along

the channel. In the transition phase. the average maximum depth is a
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relatively "weak" function of the avelOage .period, in that a large chang.e in

av.erage .maxiitl:llln}' depth c.an occur, with;j)W-Y a, ·sm.all change in average

perio~. Thus it can. be expected that both natural growth and growth by

overtaking ,are. im.portant :in.thistransition phase•.

VI-C EFFECT OF INLET ON DEVELOPMENT OF NATURAL ROLL
WAVES

In Section V -A the effect of the inlet condition on the development

of natural roll waves was considered. With a smooth inlet the water

surface a short distance from the inlet was observed to alternate

between glassy smooth and roughened in an intermittent fashion. This

unsteadiness was observed to contribute directly to the development of

roll waves, especially at the lowest normal depth of .2 in. However,

if the floor near the inlet was made rough, the transition from the

smooth water surface to the roughened water surface was steady, and

occurred farther upstream. The observations of the water-surface

texture were correlated with observations of dye streams introduced in

the flow. These showed that water-surface roughening corresponded to

mixing of the dye stream. near the water surface. Furtherm.ore, for a

rough inlet this point of dye mixing moved upstream as the dye stream

was moved towards the channel floor. For a smooth inlet the station

at which the dye mixed with the flow did not change appreciably as the

location of the dye stream above the floor was varied. These observa-

tions were also correlated with measurements of the h vs • .c,
max

relation. This showed that with a smooth inlet roll waves developed

further upstr eam than with a rough inlet. Thus the unsteadiness in
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the region of surface roughening with a smooth inlet provided a

sufficient amount of disturbance to hasten roll wave development.

The observations and measurements can all be explained in terms

of boundary layer development. In a smooth inlet a laminar boundary

layer started to develop on the channel floor. The thickness of this

layer increased with distance until the Reynolds number was high

enough for transition to turbulent flow to occur. The resulting

turbulent boundary layer then quickly expanded to intersect the water

surface and caused the observed surface roughening. However, this

transition from laminar to turbulent flow was not a steady one, but

rather of an intermittent nature similar to that observed in pipes (25).

It is unlikely that the laminar boundary layer grew to the full water

depth before becoming turbulent, because then the Reynolds number

would remain conettant and the flow would remain laminar.

For the sake of a better defined and repeatable boundary condition

at the channel entrance, all the results for natural waves were

corrected to a rough inlet in the manner described in Section V -A.

The important consideration here is that this correction was made for

each run entirely independently of the other runs. and yet all the runs

for a fixed Froude number collapsed to essentially the same dimension-

less development curves for h ,T, h . , 0h and crT.max av mm •.max
By observing the motion of dye injected into the inlet box, it

appeared that some disturbances initiated in the inlet did lead to roll

waves. This was more often observed at the higher discharges when

the unsteady component of motion in the inlet box was much easier to

detect than at the low discharge.
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At the low discharges it was possible to inject dye near the top of

the last baffle (figure 11) and observe a continuous dye stream to at

least the beginning of the channel, which indicates that the flow was not

turbulent in the inlet box. However this dye stream slowly moved from

side to side indicating that the flow was unsteady. At the higher dis­

charges it was very difficult to get a continuous dye stream established

in the inlet box because the direction of flow was changing much more

rapidly than at the lower discharges. However the dye stream did not

spontaneously mix with the flow, but rather it was broken up into

segments, as a result of the changing flow direction. and carried into

the channel with the dye still visible. Occasionally at the higher dis­

charges a vortex tube could be observed curling out of the inlet box

into the channel.

From the above observations it can be concluded that disturbances

were being generated both in the inlet box. and in the channel near the

inlet. In particular the flow in the inlet box was more unsteady at the

higher discharges than the lower discharges, and with a smooth inlet

the transition frotn latninar to turbulent flow in the channel was un­

steady. For low discharges with a rough inlet, disturbances may have

originated in the developing turbulent boundary layer. In spite of the

apparently different sources of disturbances at different discharges,

the fact remains that most of the data for a given Froude number (and

thus different discharges) collapsed to a unique ditnensionless develop­

ment curve after correction to a rough inlet was made.
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VI-D MOTION OF INDIVIDUAL NATURAL ROLL WAVES

From figures 46 and 47 and tables 8 and 9 some interesting

observations on the motion of individual waves can be derived. At

station 42 (figure 46) the flow is in the transition phase of wave develop-

ment and at stations 54, 66. and 78 it is in the final phase (growth by

overtaking dominant).

From table 8 it can be seen that when one wave overtakes another.

the resulting h is greater than that of either wave before overtaking.max

However, this resulting h value can decrease as the wave movesmax

downstream as occurred in wave 6, 7, 8. between stations 54 and 78.

The h of wave 1, 2 decreased between stations 66 and 78, but this
max

may be because it was starting to overtake the next wave. Growth by

overtaking was the dominant growth mechanism for the waves in fig-

ure 46. yet wave 9 grew appreciably without overtaking. This shows

that natural growth takes place in the final development phase. Wave 5

did not overtake and its h was about constant between stations 54
max

and 78.

Because roll waves are shallow water waves. it is reasonable to

expect that the waves with larger h have higher wave velocity andmax

thus will overtake smaller. slower waves. This is the case for wave 8,

and the overtake shown in figure 47a. However, waves are seen to

overtake waves with larger h also. This is seen for wave 4 andmax

the overtake in figure 47c. This seemingly contradictory situation

can be explained by use of the shock condition,

jh h +h._ + max [max mm]
c - umin g h . 2

mln
(3.44)



154

which was presented in Chapter III. Because u . is the average
mln

velocity in a region where the water surface is practically parallel

to the channel bottom, it can be approximated by the expression for

normal velocity,

u , ~F ~ , (6.4)
mIn mln

which shows that u , is about proportional to h 1/,Z. Now consider
mIn mln

two waves with the same value of h , ) and equation 3.44 shows that
mm

the wave with the greatest value of h travels faster. On the other
max

hand if two waves have the same h , the wave with the largest value
max

of h , may have a larger value of c if the difference in the values ofmln

h . is sufficiently large. Furthermore, a wave may overtake a wavemln

with a large value of h ,if the h , value of the overtaking wave is
max mm

sufficiently larger than that of the overtaken wave. Wave 4, the over-

take in figure 47c, and all other cases observed, showed that when a

small wave overtook a large wave, the value of h , of the small wavemln

was greater than that of the large wave.

From records similar to figure 46, the changes in the values of

h during the overtaking process, but before the two waves actuallymax

combined, were examined. Almost every conceivable combination of

increase or decrease of the h value of the following or leading wavemax

was found. For example: h for both waves were the same; h
max max

for the leading wave increased and that of the following wave did not

change; h of the leading wave increased more than that of themax

following wave; and the maximum depth for the leading wave decreased
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while that of the following wave was constant. In figure 46 between

station 66 and 78, wave 1, 2 (following wave) decreased in height while

the leading wave increased from h· Ih of 2. 19 to 2.42. A correla-max n

tion between the relation of the maximum depths during overtaking and

the maximum depths before overtaking began could not be detected.

However, as discussed above, the maximum depth of the combined wave

was greater than either of the maximum depths during or before over-

taking.

The wave velocities during the overtaking showed aconsistent

pattern which can be derived from figure 47 and table 9. From the

three overtakes at different stations shown in this figure, it is seen

that the following wave accelerates as it overtakes, and the velocity of

the combined wave is greater than that of the leading wave during over-

taking. This acceleration results primarily because the following wave

is propagating in water that is continually getting deeper and thus the

value of u . in equation 3.44 increases. Imm.ediately after the com.­mln'

bination, the value of u . decreases appreciably (since h . of them.ln ... mln

combined wave is considerably less than that of the overtaking wave

just before the combination) and the com.bined wave velocity is less than

that of the following wave just before the combination. Exper~enced

observers were able to visually detect this acceleration process in the

laboratory channel.
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VI-E GHAMBARIAN AND LACFCD DATA

1. Ghambarian Laboratory Data

Ghambarian found that the value of h reached a constant maxi-max

mum value (table 10) although he does not give the corresponding values

of ~/h • In the present study a constant maximum value of 11 was
n max

not attained, but the trend indicated that this might have occurred had

the channel been somewhat longer. For an F of 3.82, the computed

constant maximum value of h Ih from table 10 is 1.83. For the
max n

smooth channel at an F of 3.45 (figure 26), the maximum value of'

h Ih obtained in the present study was 2.06 and increasing. Thusmax n

at about the same value of F the h Ih value from the present study
max n

is larger than Ghambarian1s result. If Ghambarian1s channel was

rough the slope would have been much greater than. 05011, in which

case this discrepancy may be due to the slope effect to be discussed in

Chapter Vil.

In figure 48 the data for h Ih with a channel slope of .10 show
max .n

a rather large amount of scatter. The fact that some of the values of

h Ih (which were calculated from reported values of h Ih andmax n max cr

computed values of h Ih using equation 5.4) are less than 1.0.cr n

indicates that the reported values of F were not accurate enough. In

the present study it has been shown that considerable care must be

taken to measure normal depths, from which the value of F is calcu-

lated. It is unfortunate that more information could not be extracted

from Ghambarian rs publications.
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2. LACFCD Field Data

The field data from Santa Anita Wash (figures 50 and 51) show that

reasonably consistent relations for the development of h /h inmax n

terms of .t/hn and T' can be found by taking data for several discharges

at only one station.

In figure 50 the laboratory curve does not extend far enough to

compare with the highest values of h /h obtained from the Santamax n

Anita Wash, but the lowest values are about 18 percent less than the

laboratory values. Two important differences between the laboratory

channel and Santa Anita Wash were the inlet condition and the variable

slope. In the field (figure 49) there was a spillway followed by a

transition section of variable width which was considerably different

than the reservoir inlet used in the laboratory. For each discharge,

the values of t/h were computed by summing the values of .t/h forn . n

each reach of constant slope. However, the correct method of treating

this variable slope (which is not known) may be considerably at variance

with this procedure.

In figure 51 the field data for h /h are about 10 percent highermax n

than the theory. After a change in channel slope, it takes a certain

distance before the flow can adjust to the new slope. Thus there is a

possibility that the slope change 875 ft upstream of the measuring

station had some effect on the results. At a discharge of 272 ds, the

F on the steeper slope (S =.0332) was about 4.32 compared to 3.81
o

at the measuring station. This Yneans that if the-"875 ft was in fact not

long enough for the flow to adjust to the smaller slope, the values of

h /h at the Yneasuring station would tend to be high.max n
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There are two other considerations that affect the observed values

of h in the field. One is that only five consecutive values of hmax max

were used to find the average values. This could account for some of

the scatter in the plotted data. Finally, the method of obtaining the

h values was subject to some error. This was done by twomax

observers reading a scale painted on the channel wall with the sm.allest

division of 0.2 ft, and values were usually read to O. I ft. Thus it is

most optimistic to estim.ate that the accuracy was 0.05 ft which could

lead to errors in h as high as about 7 percent. In light of this andmax

all the other uncertainties mentioned above, the accuracy of the field

results are within acceptable limits.
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CHAPTER VII

MODIFIED PERIODIC PERMANENT ROLL WAVE THEORY

Observed mean maximum depths, h , for the periodic
max

permanent roll waves were seen to be in substantial disagreement with

the theory. In this chapter the principal source of difficulty will be

shown to be in the shock condition. which will be modified and the dis-

crepancy between the modified theory and the data will be greatly

reduced. The consequences of this modification with respect to natural

roll waves will be discussed. Before considering the shock condition.

some of the other assumptions used in the theory and the effects of a

variable friction factor and the side-walls will be discussed.

VII-A ASSUMPTIONS IN PERIODIC PERMANENT ROLL WAVE
THEORY

The momentum equation from which the theory for periodic

permanent waves was derived in Section III-B is.

u 1 To
ut + a. u u + (I-a.) A At + gh =gS - - - •x x 0 p r (2.2)

which was given in Section II-A. In addition the continuity condition.

equation 2. 1, was used, but because it is an exact equation for flow of

an incompressible fluid no comments regarding its assumptions are

necessary.

In deriving equation 2.2 from the Navier -Stokes equations (4)

numerous assumptions concerning the order of magnitude of terms
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were made. These assumptions were primarily based on the fact that

the dominant motion was in the x-direction, and thus it is not surprising

that equation 2.2 implies a hydrostatic pressure law. A wave theory

based on a hydrostatic pressure law is generally referred to as a first-

order shallow-water theory. If the vertical accelerations are notnegligi-

ble" Keulegan,(4) has found· the additional terms that are needed in equa-

tion2.2. The addition of these termsr.esults in a second-order theory.

For the analysis of periodic permanent roll waves the first-order

theory was used on the part of the wave profile that is concave upward.

From the wave profiles in figure 45, the maximum water surface

slope occurred near the shock. Yet the maximum value of dh/dX for

the run at an F of 5.60 and T' of 5.19 was found to be about 0.03. With

a maximum water surface slope of this magnitude it can usually be

assumed that the motion was primarily in the x-direction, the pressure

was hydrostatic, and thus the first-order theory is sufficient. In this

case there is the additional difficulty of the influence of the shock. As

the water particles pass through this shock, from the wave trough

(where h = h . ) to the wave crest (where h = h ), they are
mln max

accelerated upward normal to the channel floor. This motion normal

to the channel floor is usually confined to the region within the length

of the shock, at least for stationary shocks in steady flows (hydraulic

jumps). If this was the case for the roll wave shocks, the pressure

would have been hydrostatic at h and the use of the first-order
max

theory would be justified. Measurements relating to the detailed

motion in the shock were not taken. However. since the measured
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shock lengths were comparable to the lengths of hydraulic jumps (to

be discussed in Vll-C) where the use of a hydrostatic pressure

assumption has been successful in predicting the relation between

hand h . , it can be conjectured that the vertical accelerationsmax mIn

in the section of maximum depth were negligible.

In applying equation 2..2 to periodic permanent roll waves the

average shear stress on the solid boundary was evaluated by,

,. = pf u 2 /8,
o

(7. I)

as discussed in Section ll-A. This expression is valid for uniform,

steady flow with a fully developed turbulent boundary layer. The use

of this expression for unsteady, nonuniform flow (periodic roll waves)

can certainly be questioned. An attempt to justify this assumption will

not be made here except to mention that this same assumption is made

in practically all investigations of nonuniform (gradually varied) open

channel turbulent flow, both steady (e. g. backwater curves) and

unsteady (e. g. flood waves). Perhaps the strongest argument for the

use of equation 7. I is that no other alternative is available.

The friction factor is evaluated from relations for uniform flow.

This implies that the boundary layer is fully developed, which was

probably true over most of the roll wave profile except possibly near

the wave crest. In this region the effect of the rapidly expanding flow

in the shock may not have died out, or in other worBs the velocity

profile had not reached its fully developed state. Thus the shear

stress. 'T" • near the wave crest may have been substantially differento
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than assumed. The need for detailed measurements of the velocity

profile near the shock is - apparent.

The value of a. in equation 2.2 was assumed to be 1. O. Iwasa (8)

has shown that for a fully developed logarithmic velocity distribution,

a. = 1 + • 781 f •.

From the measured values of f at normal depth in the laboratory

(7.2)

channel, this equation gives maXiimum values of a. of about 1. 02 for the

smooth channel and 1. 05 for the rough channel. However, the value

of a. near the wave crest may have been larger if a fully developed

velocity distribution was not established.

Vll-B EFFECT OF SIDE-WALLS AND VARIABLE FRICTION FACTOR

1. Problem and Method of Solution

In the periodic permanent theory it was assumed that the friction

factor did not vary along the wave length and the rectangular channel

was wide enough such that the side-walls had negligible influence.

These simplifications resulted in a form of the differential equation

that could be integrated (equation 3.52). However, when the friction

factor is permitted to vary (in the same manner as it varies in uniform

steady flow), and/or the hydraulic radius concept is used to account

for side-wall friction, numerical integration must be used to find

solutions. This was done for one set of values of F and S Alh (5.60o n

and 27.3 respectively) for the purpose of finding the qualitative effects.

The friction factor was assunled to vary according to the relation found
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for uniform flow in the smooth channel (figure 22), which was

approximated by,

f = .3557/R·
2513

• (7.3)

This experimental relation is convenient because the approximate

values of quantities such as hand h are known from the experiments
c n

on the. 1192 slope (F.... 5.6). Therefore, the slope was fixed at .1192,

and the width ofthe channel was taken as 4-5/8 in., the same as the

laboratory flume.

Two different conditions were considered; a variable friction

factor with no side-wall effect, and a variable friction factor with a

side-wall effect. The methods of finding the solutions (wave shape

and velocity) for the given values of F and S A/h were basically the
o n

same for both conditions. Therefore, the method used when the side-

wall effect was included will be outlined, and the method for the other

condition follows by letting the hydraulic radius equal the depth.

The differential equation for a permanent wave profile is,

2h3gS h 3 _ f _u__
dh/dX = 0 8r

gh3 _ K2
(7.4)

which corresponds to equation 3.41. The requirement that the slope

of the water surface (dhl dX) remain finite at h =h leads to,
c

c =.jgh
c

(1 J.8
f
So : c ).
c c

(7.5)
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This results from setting the numerator of equation 7.4 equal to zero

at h =: h , and using the expressions,c

(7.6)

(7. 7)

K = (c-u)h,

and h 3 == KS Ig,. c

which were given in Chapter nIt

In equation 7.5 the quantity f denotes f at the section h =h .
c c

Equation 7.5 reduces to the expression for c in Chapter In (equation

3.51) for a wide channel (r =: h ) with an unvarying f over the wave
c c

length (f = f ).
c n

Before explaining the details the general procedure is given.

First a value of h was assumed, and then the relation between handc

X was obtained. Then a pair of values of h . and h were obtained
mIn max

that gave the desired value of S 'A/h. However, the resulting F was,o n

in general, not the one desired. Thus the procedure was repeated

with a different value of h until the desired F resulted. By increasing
c

the value of h , the resulting F was increased.c

With the assumed value of h • the value of K was calculated from
c

equation 7. 7. The value of r was obtained from the general formulac

for r,

r = bhl (b+2h) (7.8)

where b was. 3854 ft.
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To evaluate u and f in equation 7.4 the expressions

u = (ch - K) Ih, (7. 9)

R = 4ru/-v, (7. 10)

and equation 7.3 were used. This required the value of c which was

calculated from the expressions,

u = (ch - K) Ih Ic c C

R = 4r u I\),
c c c

f =. 3557 I R • Z513 ,
c c

(7.11)

(7. 1Z)

(7.13)

in addition to equation 7.5. These four equations in four unknowns

(£ , c, u , R ) were solved by a trial and error method.
e c e

The relation between h and X was obtained using equation 7.4.

For values of h greater than he' the slope (i. e. dh/dX) at a particular

value of h (i. e. h.) was extended to the next larger value of h (i. e.
1

hi+l) where the interval in h(i. e. h
i
+1 - hi = boh> 0) was sufficiently

small such that the change in the slope from hi to h i +1 was a small

fraction of the slope at h.. Using the slope evaluated at h. (i. e.
1 1

(dh/dX)i)' the distance between hi and hi+l was calculated by

and the area between hi and h i +1 was calculated by

b.A. = A'+ l - A. = (h. + b.h/Z)b.h.
1 1 1 1
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For values of h less than h • the slope at h. was extended to the next
c 1

smaller value of h (i. e. h. 1 where h. 1 < h.) so that the distance
1- 1- 1

between h. 1 and h. was given by
1- 1

tJ.X. = X. - X. 1 = tJ.h/(dh/dX).].
1 1 1- L 1

and the area between h. 1 and h. was given by
1- 1

tJ.A. = A. - A. 1 = (h. - !lh/Z)!lh.
1 1 1- 1

In this way the distances a~d the areas between all the successive

values of h were calculated. Note that the slope can not be evaluated

at h =h froIIl equation 7.4 because both the nUIIlerator and denoIIlinatorc

are then zero. However. the slopes at h + tJ.h and h - tJ.h were
c c

practically the saIIle. and this value was used at h •c

The next step was to aSSUIIle a value of h . and to calculate the
IIlln

corresponding value of h froIIl equation 3.46. The value of h.
IIlax 1

closest to this value of h was found and the wave length was foundIIlax '

by sUIIlIIling all tJ.X. between hand h . • SiIIlilarly the average
1 IIlax IIlln

depth was calculated by sUIIlIIling all !lA. and dividing by the wave
. 1

length. The average discharge was obtained froIIl,

q =ch - K,av av

The next step was to calculate u and h froIIl Jn n

r = bh /(b+Zh )
n n n

u =q /hn av n

(7. 14)

(7. 15)

(7.16)
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f =.3557!R .2513
n n

R =4r u !vn n n

f = 8gr S !u2

n non

(7. 17)

(7. 18)

(7.19)

where the unknowns were r , h , u , f , and R • With this value of
n n n n n

h , the value of S A!h was calculated. If this was not equal to 27.3,
non

another value of h . was assum.ed, the calculation was r·epeated andm.ln .

the corresponding value of S A!h found. After the value of S A!h
o non

was reasonably close to 27. 3, the F was com.puted from.,

F=u!,;gh
n n

and if it did not agree closely with 5.60, another value of h was
c

assum.ed and the entire procedure repeated. As a check on the

accuracy of the num.erical integration procedure, a case with a

(7.20)

constant f and wide channel was done by the above m.ethod. The dif-

ference between these results and the exact results (by the m.ethod in

Chapter ill) was negligible.

2. Discussion of Results

The results of the wave-profile calculations are shown in figure 58.

Qualitatively it is seen that a variable f increased h ,and the effect
m.ax

of the side-walls decreased h • Both of these trends can be deducedm.ax

by exam.ining equation 7.4. As the depth along the wave profile

increases the Reynolds num.ber increases, and thus for a sm.ooth

channel the value of f decreases. Sim.ilarly as the depth decreases,
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f increases. Thus for a given h. sufficiently large (i. e. so that f < f
n

),

the slope of the water surface is greater than the slope computed with

f = f • Also for a given h sufficiently small (i. e. so that f > f ),
n n

dh/dX is less than that computed with f =fn • Therefore, far a givennarmal

depth (or approximately a given average depth) the trend shown in

figure 58 (e. g. larger h /h with variable f theory as compared tomax n

constant f theory) is consistent with the relations between the slopes

as stated above. The same trend shown in figure 58 for a smooth

channel can also be expected for a rough channel. This is because f

depends on the depth in the same way as for a smooth channel; as the

depth increases, and thus the relative roughness decreases, the f

decreases.

The effect of the side-walls can also be predicted from equation

7.4 by observing that the value of r is always less than the value of h.

Furthermore, this difference is greater as the value of h increases.

Thus for a given h the water-surface. slope is less in a narrow channel

than in a wide channel, particularly at the higher depths. Therefore.

the relation between the wave profiles in a wide channel and a finite-

width channel must be as shown in figure 58 for the variable f theories,

and similar results can be expected for a constant f theory. In

figure 6 it was shown that as F decreased the value of h decreasedmax

and the value of h . increased. This is the same effect that the side­
mln

walls have. F is simply the quantity../8S If for a wide channel, so
o n

that a decrease in F can be considered as an increase in the frictional

resistance. Similarly the effect of the side-walls can be considered

as adding more friCtional resistance.
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In figure 58 it is seen that the value of h was increasedmax

appreciably when the friction factor was assumed to vary. and that the

value of h was decreased by a relatively smaller amount when the
max

side -wall effect was considered. However. the magnitude of these two

changes will depend not only on the values of F and S Alh , but also on
o n

the relative width of the channel (relative width = blh ), and the relation
n

between the friction factor and the Reynolds number (smooth channel)

or relative roughness (rough channel). For a relatively narrow

channel the side -wall effect is obviously greater. In a smooth channel

at large values of R the value of f is a weak function of R. This is seen

from the equation shown on figure 23. Therefore at large Reynolds

numbers the effect of a variable friction factor on the predicted values

of h may be negligible. From the above it is clear that a complete
max

description of the magnitude of the two effects considered in this

section depends on many parameters. In this section only the qualitative

effects were discussed.

VII-C MODIFIED SHOCK CONDITION

1. General Shock Condition

In the derivation of the shock condition (equation 3.46) it was

assumed (as did Dressler (15» that the shock thickness in the longi-

tudinal direction was small. The results of some measured wave

profiles (figure 45) show that this was not the case. The effect of this

finite shock length. as well as some other factors which were not

included in equation 3.46, on the shock condition will now be considered.
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Figure 59 shows a sketch of a shock front drawn approximately to

scale. It should be noted that the part of the shock front drawn vertical

on figure 59 corresponds to the sharply rising portion of the shock

easily observed in figures 1 and 24. The velocity distributions at

the wave crest and trough have been drawn to be typical of a fully

developed turbulent boundary layer. The shock wave can be analyzed

as a case of steady flow by iYnposing a constant velocity of -c on the

system. The momentum theorem can then be applied to a control

volume consisting of the fluid between the wave crest and trough. For

this steady flow the momentum theorem states that the net difference in

flux of momentum through the surfaces of the control volume is equal

to the sum of all the external forces acting on the control volume. At

the wave crest or t rough the momentum flux in the x-direction for the

steady flow is,

h
P J (up -C)2 dy = p(c2 h-2cuh + a;u2h)

o

where u:is the average velocity,

u =kf u dy,
o p

and a. is defined as,

1 jha. =::"ldh u2 dy.
u 0 p

The continuity equation for this steady flow is,

(u-c)h = constant =-K

(7.21)

(7.22)

(7. 23)

(7.24)
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Fig. 59. Drawing of typical shape of shock front, based on
periodic permanent wave run with F =5. 60, S =. 1192,
T' = 4.25 0
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so that the momentum flux. can be written,

p(cK - cuh + a.u2h), (7.25)

and the net difference in momentum flux. through the surfaces of the

control volume becomes,

~Uh(a.u-c)] - [puh(a.u-c)]

h=h. h=h
mIn max

(7. 26)

The external forces in the x-direction acting on the control volume

are the pressure forces at the crest and trough, the x-component of

the weight of the water in the control volume, and the shear force at

the solid boundary. Using a hydrostatic pressure distribution the

momentum theorem applied along the x-axis takes the form,

WS -r L.
1/2gcose (h2 _h2 .)+ 0' 0 -J=u . h . (a. . U,~I,-C)

max mIn p mIn mIn mIn tnln

(7.27)
-u h (a. . u -c)

max max max max

where W is the weight of water in the control volume per unit width,

r is the shear stress at the solid boundaries averaged over the length
o

of the shock, L.. The value of cos ewill be taken as L 0 which is
J

within one percent of its true value up to a slope (sin e) of O. 14.

The effect of a nonuniform velocity distribution can be seen by

substituting equation 7.24 on the right side of equation 7.27 to obtain,
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WS -"T L.
I 2 (h2 _h2 .) + 0 0 J K{ ) + ( 1) a hg max mIn p = umax-umin a.min- umin min

-{a. -1)u2 hmax max max
(7. 28)

For a uniform velocity distribution (i. e. u = 0) the value of a. is unity,
y

and its value is greater than unity for any other distribution. Thus the

effect of a nonuniform velocity profile at the trough is to increase the

right side of equation 7.28 which can be shown to result in an increase

in h (i. e. h = h Ih.). Sim.ilarly a nonuniform velocity distri-
r r max mIn

bution at the crest would reduce the value of h • If a. ~ a. .• the
r max mIn

right side of equation 7. 28 would be decreased from its value with

a. =a. . = l, which can be shown to result in a decrease in h •max mm r

In this discussion of the shock condition, the results of measure-

ments pertaining to the hydraulic jump will be referred to. The

hydraulic jump is a stationary shock wave where the fluid passes

through the shock from the low depth (high velocity) to the high depth

(low velocity). The wave velocity of the moving shock wave is greater

than the fluid velocity so that the fluid in front of the shock passes

through the shock from the low depth (low velocity) to the high depth

(high velocity). Thus the hydraulic jump and the moving shock are

basically the same phenomenon. By setting the wave velocity equal to

zero, and changing the sign of the shear stress because the flow

direction with respect to the solid boundary changes, equation 7. 28 for

a horizontal channel becomes.
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g / 2 (h2 -h2 .)+';f L./p=q(u . -u )+(0,. -l)qu . -(0: -l)qu
max mln 0 J mln max mln mln max max

(7.29)

For this case the average velocity at the minimum depth (u . )
mln

Therefore the right

side of equation 7.29 is more sensitive to changes in 0: • than to
mln

changes in a. • Furthermore it can be shown that for a. . ~ a.max mm max

the value of h is larger than for the condition a. =a. . =1.
r max mln

It is reasonable to expect that in most cases the value of 0: ismax

greater than a. . , particularly when the hydraulic jump is located a
mln

short distance from a sluice gate so that a. . would be practically
mln

unity. Therefore it is difficult to make any general remark concerning

the effect of nonuniform velocity distribution on the value of h for a
r

hydraulic jump. From the last two equations it, can be shown that the

effect of the shear stress would be to increase the value of h for a
r

moving shock wave, and to decrease the value of h for a hydraulicr

jump.

Measurements of pressure and velocity distributions at the wave

crest and trough, and shear stresses on the solid boundary for

hydraulic jumps will not be discussed here, and indeed are relatively

scarce. Perhaps it is sufficient to note that equation 7.29, with

a. =1. 0, and ';j="o neglected, has been substantially verified by many

investigators (27). Thus it is tempting to assume that the combined

effects of nonhydrostatic pressure distribution, nonuniform velocity

distribution, and shear stress for a moving shock (equation 7.28) are
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minor. However, it was stated: above that the shock condition for a

hydraulic jump is more sensitive to changes in a. . than changes in
mln

a. I whereas for the moving shock wave, the shock condition ismax

more sensitive to a. • Therefore if a. for a moving shock wave
max max

is much different than a. . for a hydraulic jump, the relative effect
mln

of a nonuniform velocity distribution for a moving shock wave will be

different than it is for a hydraulic jump.

For hydraulic jumps on sloping channels the weight term has been

found to be important. Bakhmeteff and Matzke (28) found from their

experiments that neglecting the weight term led to substantial dis-

crepancies for values of h • However after evaluating the weight term
r

by using their measured jump profiles, but still neglecting the solid

boundary shear force and as suming a. = II they found good agreement

between theoretical and measured values of h. From this experience
r

with hydraulic jumps, it is reasonable to expect that the weight term for

a moving shock will be important. Equation 7.28 shows that inclusion

of the weight will decrease the value of h , and this effect will increase
r

with the slope. Figure 44 shows that this is the trend required to

decrease the discrepancy between the predicted and measured values of

h /h.
max n

2. Theory Based on Modified Shock Condition

The shock condition with the weight term will now be put in a con-

venient form for use in the theory. The theory with this modified

shock condition will be referred to as the modified theory. Neglecting

the effects of nonuniform velocity distribution and shear stress,
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equation 7. 28 can be written as,

l/2(h2 -1) + WS If{h2 . )= (l-l/h ) (c-u . )2/(gh • )
r 0 mln r mln mln

(7.30)

after using equation 7.24. The last term has the form of a Froude

number. This will be designated as,

*F . = (c-u . )/~!mln mln mln
(7. 31)

The value of W must be evaluated from measurements of the shape of

the shock front. Once again it is convenient to refer to the hydraulic

jump where it has been found that the length of the jump can be

expressed as a function of the Froude number at the minimum depth

(Fmin = umin/"/ghmin)· The length of the jump is usually expressed

in terms of the value of h • Therefore the weight term in equation
max

7.30 is expressed as,

5 W l(yh2 • \ = 5 h 2 (h Ih ) (L./h )o mllt 0 r e max J max

where h is the average depth over the length L., so that,
e . .J

W = h L.y.
e J

Now equation 7.30 can be written,

*2 ~
h 3 (G +112) - h (F . + 112) + F . =0r r mln mln

where,

G = 5 (h Ih ) (L./h )
oe max J max

(7.32)

(7.33)

(7.34)

(7.35)
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The wave shapes of the periodic permanent roll waves included

some information on the geometry of the shock front. The method of

obtaining this shock data was given in IV-D-3-b, and the results are

in table 7. When these data were taken the importance of the shOCk

front was not realized, and consequently the oscillograph chart speeds

were slower than would be desirable. This required measuring dis-

.tances on the oscillograph charts of the order of 0.5 mm to define the

shock geometry. Therefore the shock geometry to be presented

should be considered preliminary in nature.

The lengths of hydraulic jumps are usually expressed as a function

of the value of F . • This suggests that for a moving shock wave
mIn

the geometry could be expressed as a function of F*. . In this studymIn

velocities were not measured so that the value of F*. for each
Inln

periodic permanent roll wave run is not known. From equation 7.34 it

can be shown that h increases as F*. increases. Thus it is expectedr mm .

that h /h and L./h can also be expressed as a function of h .
e max J max r

This expectation was at least partially realized as figure 60 shows.

These data points represent all the periodic permanent roll wave runs

listed in table 7 ex.cept two for which a shock profile was not well

defined by the measurements.

Having the relations in figure 60 it would be desirable to use them

in equation 7.34 and compute the values of h for each periodic
r

permanent wave run and compare these with the observed values of h •
r

However this requires the values of F*. for each run which are not
mIn

obtainable. Therefore an indirect check on the Inodified shock condi-

tion was made by using equation 7. 34 and the r elation for h L./ h2
e J max
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from figure 60 in the periodic permanent roll wave theory. From this

modified theory there results a relation between the values of h r and

T I for each value of F and slope. It is to be noted that the slope as

well as F must be specified (equation 7.35). This relation between h
r

and T' will be compar ed with the measured values. In addition the

quantities h /h, h . /h , and c/.JSh". computed from the modified
max n mln n n

theory, will be compared to the measured values. Before presenting

these results. the procedure for incorporating the modified shock

condition into the theory will be briefly explained.

Equations 3. 42 and 3.43 can be combined to give.

(7.36)

Thus the value of h is a function of h . Ih and G. When the value of
r mm c

G is set equal to zero. equation 7.34 becomes

(h - 1) [ha /2 + h /2 - (h /h . )3J- = 0 (7.37)
r r r cmln

and the nontrivial solution for h is given by equation 3.46. However
r

for a nonzero value of G, the shock condition remains a cubic equation

and was solved by a numerical procedure. The method used to find the

solutions for h • h /h. etc.• was basically the same as for ther max n

*original theory. With a given value of F and S a value of h . waso mln

* *chosen (h ~ h . ~ 1). Then in order to find h from equation 7.34
a mln r

a value of G was assumed and h was then computed. If this value of
r

h did not correspond to the assum.ed value of G (figure 60), another
r

value of G was assumed and the process repeated until the values of
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G and h corresponded. Once the shock condition was satisfied, the
r

rest of the solution was found in the same manner as before.

The modified theory was used to obtain solutions for h • h /h.r max n

h . /h • and c/../i,FC as functions of T I for the values of F and S used
mln n n· 0

for the periodic permanent roll wave experiments. These solutions,

along with those predicted from the original (or unmodified) theory,

are shown in figures 61-64. The results of the periodic wave experi-

ments (table 6) are also shown on these figures. For the values of

h /h, the experimental relations from figures 54 to 57 are plotted.
max n

The range in the values of T I for the periodic experiments for S =
. 0

.05011 was relatively small. Therefore the results for two natural-

wave runs (h =.206 in., F = 3.45, station 120, smooth inlet;
n

h =.314, F = 3.71, station 120, smooth inlet) at S =.05011 weren . . 0

also shown on figure 61.

3. Discussion of Modified Theory

Figures 61 to 64 show that, in general, the modified theory offers

better agreement with the measurements than the original theory

except for the values of h . /h. The am.ount of improvement pro­mln n

vided by the modified theory increases with the slope. The modifica-

tion (addition of S W term) to the original theory decreases the values
o

of h /h. and h /h, and increases the values of h . /h andmax mln max n mIn n

c/~ . The average discrepancies (over the range of T' used in the
n

experiments) between the modifed theoretical relations and the experi-

mental relations for h /h are: 4.5 percent, S =.05011; 3.0 per-max n 0

cent, S =.08429; 9.5 percent, S =.1192; and 8.5 percent, S =.1192,
000
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rough channel. The corresponding maximuln discrepancies are 9.0,

4.5, 13.5, and 9.5 percent.

At S =.05011, the modified relation predicts values of h /h
o m~ n

less than the measured values. At S =.08429 the predicted ando

measured values of h /h are in close agreement. For both the
m~ n

smooth and rough channel at S =.1192, the predicted values of
o

h /h are greater than the measured values. Thus the discrepan-
~ n '

cies in the values of h . /h show a dependence on the channel slope.max n

One possible explanation for this may be that the geometry (i. e.

L. /h and h /h ) of the shock 'wave should depend on the channel
Jm~ em~

slope, although the somewhat preliminary data in figure 60 did not

show this. However for hydraulic jumps the length of the jump has been

found to depend on the slope. This is shown in figure 65 which was

taken from Chow's book (29). The relations in figure 65 are for

hydraulic jumps in which the minimum depth was upstream of the

maximum depth. Therefore the moving s~dck wav.e-s; (<figure 59.-)must

be, €onsidet'eci to be on a negative slope with respect to the slopes shown

in figure 65. Therefore if subsequent measurements of the lengths of

moving shock waves did in fact reveal a slope effect, and it followed

the trend in figure 65, one would expect the values of L./h to
. J m~

increase as the slope increased. This would tend to compensate for

the effect of channel slope on the discrepancies in h /h shown onmax n

figures 61-64. The m~imum value of L./h in figure 60 of about
J max

7.5 is lar.ger than the maximum value of L./h shown in figure 65.
J max

This indicates that the lengths of moving shock waves and hydraulic

jumps are compatible.
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VIl-D RE-EVALUATION OF LABORATORY RESULTS WITH
CONSIDERATION TO EFFECT OF CHANNEL SLOPE

1. Periodic Permanent Waves

The laboratory experiments with periodic roll waves showed that

even with the values of F and T' fixed, the value of h Ih depended
max n

on the channel slope. This can be seen by comparing the values of

h Ih for S =.05011 (figure 61) to those in the rough channel withmax n 0

S =.1192 (figure 64). It iSdSeen that, for a fixed value of F and T',o

as the slope increases the value of h Ih decreases.
max n

This slope effect for periodic permanent waves was predicted by

the theoretical analysis only after the shock condition was modified to

include the x- component of the weight of the shock. This force due to

the shock weight was previously (Dressler (15» assumed to be negligible

compared to the pressure forces. The modified theory greatly reduced

the discrepancies in h Ih between the original theory and the
max n

experimental results.

Theh Ih vs. T' experimental relations (figures 44, 61-64)max n

should apply to periodic permanent roll waves in all wide rectangular

channels with slopes comparable to those used in this study. In other

words both the slope and the Froude number must correspond to the

values of Sand F listed on figures 61-64. If the slope is less than
o

that used to obtain a h Ih vs. T' relation, the magnitude ofmax n

h Ih will be greater than predicted from the experiments. For
max n

example in a channel with a Froude number of about 3. 5 and a value

of T' of 4. 0, figure 61 shows that h Ih would be about 2. °for amax n

slope of about. 050. If the slope were significantly less than. 050,

then hmax/hn would be larger. As an upper limit for hmax/hn , the
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unmodified theory can be used, which in this case predicts a value

of h /h of 2. Z.
max n

Although the use of the unmodified theory to predict an upper limit

for h /h is somewhat speculative. the water-surface profile formax n

the periodic wave run in the l30-ft channel (figure 43), in which the

slope effect was probably of minor importance. agreed quite well with

the theory. It is reasonable to assume that the unmodified theory

should predict an upper limit for h /h with about the same
max n

accuracy as the modified theory predicted h /h in the experiments,
max n

at least over the range of F and T' used in the experiments.

For the case in which the channel slope is less than that used in

the experiments, the range between the value of h /h from themax n

unmodified theory (upper limit) and the value from. the experiments

may be quite large. In the example considered above the range of

h /h was only from 2.0 to 2.2. However, for a case withmax n

F = 4.6, T I = 3.5, and S = .06, the range of h /h would be fromo max n

2.2 to 2.75 (figure 62). To get the value of h /h corresponding tomax n

S =.06, the modified theory would have to be used in the manner
o

described in Section VII-C, using the shock geometry relations from

figure 60. For cases in which the channel slope is greater than that

us ed in the experiments. the value of h /h will be Ie s s than pre-max n

dicted from the experimental relations. If the slope is considerably

greater, the modified theory could be used to find out how much lower

the value of h /h would be than the experimental value.
max n
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2. Natural Roll Waves

The influence of this slope effect on the experimental results for

natural roll waves will now be considered. In Section VI-B it was

shown that the h /h vs. T' experimental relations for periodicmax n

waves were also valid for natural roll waves in the final development

phase, if h was used for hand T was used to calculate T'.max max av .

Therefore the h /h vs. T' experimental relations for natural wavesmax n

will be influenced by channel slope in the same way as the h /h vs.
max n

T I relations for periodic waves. The field measurements in Santa

Anita Wash (figure 51) serve as an example of the effect of the slope

on the h /h vs. T' relation. The field values of ii Ih weremax n max n

greater than predicted from the laboratory relation. and the field slope

was.025 as compared to .050 in the laboratory. The magnitude of the

slope effect on the values of h /h can be evaluated in the same way
max n

as described above for periodic waves. However the slope effect (if

any) on the standard deviation of h /h can not be evaluated frommax n

existing knowledge.

Because of the slope effect on the h Ih vs. T I relation for
max n

natural waves, there should also be a slope effect on the growth rates

of natural waves in the final development phase. Stated symbolically.

it is expected that for a fixed value of F and 11 /h (for h Ih
max n max n

sufficiently large), the value of oh /dt will also depend on the slope
max

such that as the slope is increased the value of dh /dt will bemax

decreased. This dependance of dh fdt on the slope was found inmax

the laboratory experiments. Figure 26 shows the h Ih vs. t/hmax n n
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relation for S =.050 II, and the relation for S =. 1192 (rough
o 0

channel) is shown on figure 29. For the large values of h /h
max n

the Froude numbers were about 3.5 and 3.7 respectively. Figures 54

and 57 show that for h /h greater .than about 1. 4 the natural waves
max n

were in the final development phase. Figures 26 and 29 show that for

a given value of 11 /h above 1.4, the value of oh /a~ was greatermax n . max

for the smaller slope. This is more readily seen from figure 48 on

which both development curves are shown.

The growth rate (oh /o~) can be expressed as the product of
max

the slope of the h /h vs. T' relation (o(h /h )/oTI) and the
max n max n

slope of the T' vs. ~/h relation (oT' /a(~/h ». Therefore if the slope
n n

effect on both of these relations could be ~valuated, the m.agnitudes of

oil /o~ for slopes other than those used in the laboratory could bemax

determined. Unfortunately the slope effect can only be evaluated for

a Ii vs. T' relation. However the experimental evidence showedmax

that the slope effect on both oh /o~ and o(h /h }foT I was quali-max max n'

tatively the same (i. e. an increased slope resulted in lower values of

oh /o~ and o(h /h )/oT'). Therefore the slope influence on a T'
max max n

vs.~/h relation must be less important than on a h lh vs. T'n max n

relation. Thus for purposes of obtaining somewhat rough estimates of

the magnitude of oh /o~ for channel slopes other than those used inmax

the experiments, the slope effect on a T I vs. ~/h relation may be
n

considered negligible.
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Thus far in this section the influence of channel slope on the

values of h /h or Ii /h for large amplitude shock-type rollmax n max n

waves has been considered. The theoretical analysis was able to

predict (at least qualitatively) all the observed slope effects only after

the shock condition was modified to include the x-component of the

shock weight. For small amplitude waves with continuous water

surfaces (before the waves break) no shock condition is required.

However, as explained in Section VI-A, there still may be an effect

of channel slope on growth rates of small amplitude natural roll waves.

This is because the periodic small amplitude theory predicts a slope

effect (equation 3.38).

The prediction of a slope effect on growth rates of small amplitude

waves based on equation 3.38 should probably not be considered as

sufficient evidence that there actually will be such an effect. This is

because this same theory was unsuccessful in predicting the effect of

Froude number on the growth rates of small amplitude waves. The

theory predicted the growth rates to increase as F was increased.

The experimental results showed that the growth rates were about the

same for all values of F, however the value of t/hn at which the growth

began decreased as F was increased.

The experiments in which F was fixed and the slope was changed

(i. e. F ~ 3.5, S =.05011, and S =.1192 (rough channel» were in-o 0

conclusive on the effect of channel slope on growth rates of small

amplitude natural roll waves. The results showed that a given value

of Ii /h occurred at smaller values of t/h for S =.1192. asmaxn no
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compared to S =. 05011. However the initial disturbances (minimum
o

values of h Ih) were significantly larger at S =. 1192 than at
m~nO·

S =.05011. These larger initial disturbances were attributed to the
o

differences in the channel surfaces (i. e. hydraulically rough at

S =. 1192, and hydraulically smooth at S =.05011) rather than the
o 0

differences in the channel slopes.
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CHAPTER VIII

PREDICTION OF MAXIMUM DEPTHS IN LARGE CHANNELS

When designing open channels to convey a certain discharge it is

important to know if roll waves will occur or not. If they will occur

it is important to know the height of the waves (h ) at all stations
max

along the channel. Estimates of these values of h can be made bymax

utilizing the experimental results of the present study. In an existing

channel in which roll waves appear at low discharges. there is the

question of whether roll waves will also appear at much larger dis-

charges. This question, along with the problem of predicting values

of h for a proposed channel will be discus sed in this chapter.max

The laboratory measurements were taken in a wide rectangular

channel on a constant slope. Therefore a channel with these properties

will be treated first. In many practical cases the channel slope

changes at various intervals so that a channel may consist of a series

of short reaches at constant slopes. A few methods of treating a wide

rectangular channel of this type will be proposed. and the methods

compared by use of a numerical example. In the final section a method

of predicting values of h for rectangular channels that are not widemax

will be suggested. First the effect of the channel slope on the pre-

dieted values of h will be discussed.max
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vrll-A CHANNEL SLOPE EFFECT

For a Froude number equal to one of those in the laboratory

channel. well constructed concrete channels will usually have a smaller

slope. This was the case for Santa Anita Wash (figure 51). In these

cases the values of h predicted from the laboratory results should
max

really be increased because of the slope effect on the growth rates of

shock waves (Section vn-D). However it was shown that the channel

slope only began to influence the growth rates of Ii after they had. max

developed into shock waves. There is no experimental evidence to

indicate a slope effect on the growth rates of small amplitude roll

waves. and for practical purposes it is probably sufficient to neglect

any such effect. Furthermore because of lack of data concerning the

influence of slope on the T' vs. ~/h relation, and the necessity of a
n

lengthy analysis to adjust the 11 Ih vs. T' relation to apply to amax n

slope other than that used in the experiments, the corrections to the

predicted values of h would only be approximate with some unknown
max

degree of accuracy. Therefore in most cases the slope correction

need not be calculated, however it should be realized that if the channel

slope is significantly less than the laboratory channel slope {at the

same Froude number}, the growth rate of the shock wave s (all lo~)max

will be greater than it was in the laboratory.
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VllI-B PREDICTION OF MAXIMUM DEPTHS IN WIDE RECTANGULAR
CHANNELS WITH A CONSTANT SLOPE

Figures 52 and 53 contain the information needed to predict values

of h for channels with inlet conditions equivalent to that used in the
max

laboratory. This would include any channel in which the flow was

introduced with a negligible amount of disturbances due to flow con-

traction or expansion. The experimental evidence clearly indicated

that with larger initial disturbances the roll waves developed closer to

the inlet. Therefore any particular inlet condition should be compared

to the inlet condition in the laboratory with respect to disturbances

that might exist. Large inlets will almost certainly have su.fficient

irregularity to insure that a turbulent boundary layer, as opposed to

a laminar boundary layer I will be developed from the beginning of the

channel. With a turbulent boundary layer the inlet would be a rough

inlet which is the type of inlet to which figures 52 and 53 apply.

With inlet conditions equivalent to those of the laboratory channell

it is a simple matter to find h at any distance from the inlet once
max

the values of F and h are known. For purposes of designing channels
n

the maximum value of h is also required and can be found from themax

relation given in Section VI-A,

(h ) =h + 2.58 O"h
max max max max

(6.3)

Figure 35 gives values of O"h Ih as a function of ~/h. Fromn n
max

figures 35 and 52 it is seen that for small values of h Ih the. max n

standard deviations were not measured. The relations for O"h Ihn
max

in figure 35 can be extrapolated to smaller values of t/h (and'thus
n

smaller values of li /h). but for values of ~ /h on the partmax n ~~ax n
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of the development curve that is COncave upward it is sufficient to

assume that the standard deviations of h were zero.
max

Consider a channel with S =.03, F = 3.7, and J.-/h =6000. Theo n

data points on figur e 53 for an F of 3. 71 and 3. 81 indicate a definite

increase in h /h at a value of J.-/h of 1500 and a value ofmax n n

ii /h of 1. 05. Therefore small amplitude waves start to grow atmax n

about J.-/h = 1500. At J.-/h = 2400 the waves would reach a value of
n n

h /h =1. 15 and form shock waves. Figure 35 shows thatmax n

0h /hn would still be quite small. At the end of the channel,
max

J.-/h = 6000, the value of h /h would be 1.70 (figure 52) andn max n

0h /h would be • 20, so that (h ) /h becomes equal to 2. 22.
max n max max n

Because the slope of .03 is smaller than the. 05011 used in the

laboratory, the growth rate of the shock waves would be somewhat

greater. This increased growth would occur from J.-/h = 2400 to 6000,. n

but the slope correction to the growth rate can only be computed for the

final development phase. From figure 54 this final development phase

is seen to start at ii /h = 1. 45 and T I = 1. 6. Figure 30 shows that
max n

T' = 1. 6 corresponds to J.-/h = 4000. As explained in Section VII-D
n

the increased growth rate at smaller slopes can be computed if the

h /h vs. T I relation for the smaller slope is known. In this case
max n

the h /h vs. T' relation for S =.03 is not known, but it is sus-max n 0

pected that it would lie between the experimental relation for S =.05011o

and the theoretical relation for F =3.5 shown on figure 54. Actually

the theoretical relation for F = 3.7 should be used. Figure 30 shows

that at the end of the channel the value of T' would be 2. 55. On

figure 54 it can be seen that between values of T I of 1. 6 and 2.55, the
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change in the values of h Ih is greater for the theoretical curve
max n

than the experimental curve. For the experimental curve with So = .03

(Froude number still about 3.5), the change in the values of h Ihmax n

between values of T' of 1. 6 and 2.55 would presumably be between the

two changes observed on figure 54. Therefore the maximum increase

in the growth rate (oh lot) occurs by using the relation from the
tnax

unmodified theory. The change in the value of h Ih between
max n

T' = 1. 6 and T' = 2.55 is .29 for the theoretical relation (1. 57 to 1. 86),

and.25 for the experimental relation (I. 45 to 1. 70). Thus the

corrected value of h Ih at the end of the channel is .1. 74 (1. 45 +max n

.29), and (h ) Ih becomes 2.26.max max n

In the above example the increase in the growth rate was very

small, but for larger Froude numbers and greater differences between

the channel slope in the field and those used in the laboratory the

correction to the value of h Ih will be more significant. In this
max n

example the slope correction was easy to estimate because the growth

rates predicted from the unmodified theory were only slightly larger

than those predicted from the experimental relation. In figure 56 the

values of o{h /h )/oT' from the theoretical curve are considerably
max n

larger than those from the experimental relation. Thus for channels

with slopes considerably smaller than. 1192, say. 07, the h Ih vs.max n

T t r elation based on this smaller slope would be desirable. This

relation could be obtained using the modified theory (as given in

Chapter VIII), but it would require considerable calculation. Of course

the unmodified theory could always be used to obtain the maximum

value of h , as was done in the numerical example above, but this
max
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would give values of h that would be much too large in cases similar
max

to those of figure 56 in which the slope of the curve for the unmodified

theory is significantly larger than for the experimental curve.

The inlet conditions may not be equivalent to those of the laboratory

inlet. In this case the maximum value of h at any station can be
max

found by assuming that the roll waves begin to develop at the upstream

end of the channel. Thus for the channel with -t Ih =6000 and F =3.7:
n

at -t/h = 900, h Ih = 1. 15; at -t/h = 4500. h Ih = 1. 70; and atn maxn n maxn

-t/h =6000, Ii' /h =1. 90.n max n

Consider the case of an existing channel in which values of hmax

are llleasured at low discharges and it is required to predict values

of h for much larger discharges. This is done by finding the
lllax

relation between h /h and -t/h which can then be used for all dis-
max n n

charges and at any station in the channel. Of course other measured

quantities such as O'h and TJ could be treated in the same way. The
max

concept of a unique relation between ii . Ih (and other quantities)max n

and ~/h • for the Froude number (nearly) constant. was verified in
n

the laboratory (figures 26-29). It is only valid if the inlet condition

is the same at all discharges.

vm-c PREDICTION OF MAXIMUM DEPTHS IN WIDE RECTANGULAR
CHANNELS WITH A CHANGING SLOPE

The effect of a slope change on a developing roll wave train was

not investigated. In a wide rectangular channel the Froude number

can be written as

(s. 1)
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Because h /h depends on F. it is clear that a slope change will
max n

influence the wave depths. This influence will not take place immedi:>::

ately downstream of the slope change. but over some length of channel

downstream of it. As an example of what could occur, consider a roll

wave train in a long steep channel with a large slope change so that the

Froude number in the lower section is about 1.2. For this situation,

because the Froude number is less than the critical value (Chapter II).

h /h would actually decrease and at some distance far downstreammax n

from the change of slope a uniform flow would be attained.

The mechanics of a roll wave train propagating in a channel with

reaches of different slope is quite complex. and indeed not yet under-

stood. However it is interesting to speculate on what would happen in

such a channel. based on what is known for a channel on a constant

slope. To this end three methods of analysis of the problem will be

shown by means of a numerical example.

Consider a wide rectangular channel with .f., =2400 ft, S =0.10,
o

F =5.6. and hn =1. 0 ft. Downstream of this channel is a reach with

.f., =3350 ft and F = 3.5. For the same friction factor in each channel,

equation 8. I shows that the slope of the downstream channel must be

.0392 (i. e •• 10x(3. 5/5. 6)2). For the same discharge and channel

width in both reaches. the uniform flow equation

Q =bh .,f8g/f ../hS
n n 0

(8.2)

shows that the normal depth in the. 0392 slope reach must be 1. 37 ft

(i. e. 1. 0 x (.10/.0392)1/3). Three methods will be used to find the



201

average maximum depth and the maximum of the maximum depths at

the downstream end of the reach with the slope of .0392. These

methods are easily extended to cases of more than two slopes.

In table 14 the calculations are shown for each method. The

development relations for cr
h

Ih (figure 35) and n Ih (figure 52)
n max nmax

were used in these calculations. In method I the first step is to calcu-

late hand cr
h

at the downstream end of the first reach with
max

max
S =0.10. Then these values are expit'essed in terms of the normalo

depth of the second reach and used as lIinput ll to this reach. The values

of t/h that would have been required to develop these values of h Ihn max n

(1. 17) and crh Ihn (. 13) had the value of F been 3.5 are then found.
max

Then with these values of t/h , the additional growth along the reach
n

with a slope of .0392 was found. The basic assumption employed in

this method was that the development relations (figure 35 and 52) do

not depend on the upstream conditions, or in other words. for any

given value of h Ih or cr
h

Ih, regardless of how these valuesmax n nmax
were obtained, the rates of growth are given by the laboratory

relations.

In method n the channel was assumed to be on a single slope with

the same vertical drop between the two ends as the original channel

had. The values of F and h are then calculated keeping the total dis­
n

charge and the friction factor fixed. The values of hand cr
hmax max

are then calculated for this 'lequivalent ll channel.'

In method In it was assumed first that the entire channel had

S =.10, then S =.0392. For each case the values of nand
o 0 max
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Table 14·

Sample Calculations Of Maximum Depth
For Channel With A Break In 5lope

Upstream reach

Downstream reach

- -t..=2400 ft, 5 =0. 10, F=5.6, h =1. 0 ft
o n

- -t..=3350 ft, 5 =.0392, F=3.5, h =1. 37 fto n

Method I

At downstream end of 5 =. 10 reach:
o

-t../h =2400, ii /h =1.6, ii =1.6ftn max n max

O'h /h =. 18, (h ) =1. 6+2. 58x. 18=2.06 ftmax n max max

At upstream end of 5 =. 0392 reach:o
Ii /h =1. 6/1. 37=1. 17 which corresponds to -t../h =2500max n n

O'h /h =. 18/1. 37=. 13 which corresponds to -t../h =3600n nmax

At downstream end of 5 =.0392 reach:
o .

for h : -t../h =2500+2440=494·0, Ii /h =1. 58,max n max n

Ii' =1. 58x1. 37=2. 16 ftmax

for O'h
max

-t../h =3600+2440=6040, O'h /h =.20,n n
max

O'h =. 20x1. 37=.27 ft
max

(h ) = 2.87 ftmax max

Method II
2400 3350

Average 50 =~ x. 10 +~x. 0392 = .0645

Equivalent h = (. 10/.0645) 1/3 x 1. 0 = 1. 16 ftn

Equivalent F = (.0645/. 10) 1/2 x 5.6 = 4.5

•.. use lab curves for 5 =.08429
o

-t../h =5750/1. 16=4950, Ii' /h =2.06,n max n

Ii' =1. 16x2. 06=2. 39 ft, O'h /h =.27,max n
max

O'h =1. 16x. 27=. 31 ft
max

.... (h ) =3. 20 ftmax max
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Table 14 (continued)

Method III

t = 5750 ft, F =5. 6, h = 1. 0 ftn

t/h = 5750, n /h = 2.55, n =a. 55 ftn max n max

0h /h =.36, (h ) = 3•.48 ftn max max
max

t = 5750 ft, F =3.5, h = 1. 37 ftn

t /h =5750/1. 37 = 4200, h /hs = 1. 48,n m~ n

11 =2.03 ft, 0h /h =. 155, 0h =.21,
m~ nmax m~

(h ) =2.58 ft
max max

Weighted averages:

2400 3350
11m~ ="5'7'50 x 2. 55 +57"50 x 2.03 =2.24 ft

(h ) = ~74~~ x 3.48 +~ x 2. 58 =2.95 it
max max :> I :>u



2.04

The weighting factors were based on the

Then to obtain the predicted values of nand
max

were found.°h
max

0h at the downstream end of the channel with two slopes, a
max

weighted average was found.

lengths of the reaches.

For all methods the value of (h ) was evaluated using
max max

equation 6.3. Table 14 shows that for method II the value of

(h ) was about 10 percent greater than for the other two methods.max max .

It is difficult to say which method predicts the most reliable values.

Method II is obviously easier to apply, expecially for cases involv-

ing many different slopes. For method I at least the assumptions

employed are clear, whereas in the other two methods the justifica-

tions are obscure.

For predicting values of h at high discharges in existingmax

channels with changing slope from measured values of h at low
max

discharges. the method used for Santa Anita Wash (figure 50) should

be adequate. In this method the measured values of Ii at onemax

particular station were divided by the concurrent value of h at thatn

same station. These values of 11 /h were then plotted against a
max n

value of t/h that was computed by adding up the individual values ofn

t/h for each reach of constant slope upstream of the measuring
n

station {i. e. t/h = ~ t./ (h ). where t. is the length of the i
th

reach
n 1 1 n1 1

and (h ) is the normal depth for the i th reach). Strictly speaking the
n

resulting h /h vs. t/h relation is only valid at the station at
max n n

which the measurements were taken because of the slope variations.
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This restriction stems from the fact that the growth rate (Oh lot)max

for a particular value of h increases as the Froude numbermax

increases (figure 52). In a system in which the slope decreases in the

downstream direction, the relation h Ih vs. t/h determined frommax n n

measurements at one station will predict values of h Ih that aremax n

too low when the relation is used at stations upstream of the measuring

station, and similarly this same relation will predict values of

h Ih that are too high when used at stations downstream of themax n

measuring station.

VllI-D INFLUENCE OF SIDE-WALLS

In Section Vll-B the results of a calculation concerning the effect

of the side -walls on the periodic permanent roll wave theor y were

presented. It was found that for a fixed value of F and T', the value

of h Ih was less when the frictional resistance of the side-wallsmax n

was included in the calculation using the concept of a hydraulic radius.

From this result it is reasonable to conclude that for natural roll waves

in the final development phase. the value of h Ih for a given T' andmax n

F would be less in a narTOW channel as compared to a wide channel.

If it is assumed that the T' vs. t/h relation is not influenced by the
n

side -walls, then the value of h Ih at a given t/h will be Ie s s formax n ·n

a narrow channel. Unfortunately there is no experimental evidence to

either support or refute this argument.

The concept of a critical Froude number, F ,was discussedcr

briefly in Section ll-B. By definition. a flow with F< F is insensitivecr

to small perturbations of the free surface. This is usually interpreted
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to mean that roll waves will not develop in £lows with F < F . In the
cr

laboratory experiments the minimum value of F was about 3.5. The

value of F was not determined experimentally, and indeed would becr

quite difficult to obtain because of the very small growth rates for

values of F near F • However the theoretical value of F for a widecr cr

rectangular channel is larger for a narrow channel than a wide channel.

Unfortunately there is no experimental evidence to bring to bear on what

the value of F is for a rectangular channel, and what influence thecr

side-walls have on the value of F .
cr

From what little analytical evidence that exists, it appears that

by neglecting the effect of the side-walls, the values of h that wouldmax

be predicted from the laboratory relations would be somewhat high.

However the actual effect of the side-walls can not be evaluated until

experimental evidence is available. In the meantime the only

alternative is to neglect the possible effect of the side-walls.
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CHAPTER IX

RESULTS AND CONCLUSIONS

The purpose of this study was to describe some of the properties

of roll waves that develop from a uniform flow in a steep wide rec-

tangular channel.

A. From the measurements obtained in the laboratory channel,

the following results concerning natural roll waves were obtained:

1. For a given Froude number F and channel slope S the. 0

following quantities could be expressed as unique functions of ,t/h •n

the ratio of the distance t from the beginning of the channel to h ,n

the normal depth of the uniform flow:

a)

b)

c)

h /h, where h is the tnean value (at a fixed t)
max n max

of the depths at the wave crests.

T I = S T ./iJh =di~ensionless wave period in
o av n

which T is the mean wave period (i. e. time for
av

the wave to pass a given station) and g is the

acceleration of gravity.

h . /h , where ii . is the mean value of the depths
mln n mln

d)

at the wave troughs.

(Jh Ih. where 0h is the standard deviation of h •n max
max max

e) 0'1" the standard deviation of TI.
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z. For a given value of li ,the growth rate ali fa tof the
max max

shock waves (i. e. large amplitude roll waves) increased as Froude

number was increased by increasing the channel slope.

3. Small amplitude roll waves of significant magnitude, taken

as h fh =1.1, occurred at values of .tfh that decreased as Froudemn n n

number increased.

4. In any given flow, T remained unchanged in a reach thatav

extended from the station where small amplitude waves had developed

sufficiently so that individual waves could be identified, to some

station downstream of where the small amplitude waves formed into

shock waves. This portion of the development where T rem.ainedav

unchanged was termed the initial development phase. Downstream

of the initial development phase, shock waves were overtaking and T
av

increased approximately linearly with .t.

5. Two types of wave growth (i. e. increase in h ) weremax

identified:

a) natural.growth - that growth which occurs without wave

overtaking. This was the type of growth that

occurred in the initial development phase.

b) growth by overtaking - that growth which occurs when

a shock wave overtakes and combines with another

shock wave to form a single shock wave with h
max

greater than that of either wave before combination.
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6. After a sufficient amount of growth (h /h > approximatelymax n

1. 5) the Ii /h vs. T' relation for natural roll waves was practicallymax n

identical to the experimental h /h vs. T' relation for periodic perman-max n

ent roll waves at the same Froude number and slope. From this corres-

pondence between natural and periodic waves it was deduced. that growth

by overtaking was the dominant type of growth during this portion of the

development which was termed the final development phase.

7. The velocity of an individual shock wave increased as the depth

at the crest h increased, and as the depth at the trough immediatelymax

in front of the shock front increased. Consequently, the h of anmax

overtaking wave was occasionally less than that of the wave being over-

taken. In addition an overtaking wave accelerated while it was propa-

gating on the gradually increasing depth behind the wave being overtaken.

The velocity of the combined wave was greater than that of the overtaken

wave, and less than that of the overtaking wave just before the two

waves combined.

8. The frequency distributions of h ,T. and c for a given flow
max

at a given station were approximated by the Gaussian distribution,

whereas the frequency distribution for h . was skewed toward themIn

small values so that the mean value was less than the median.

B. The following results concerning periodic permanent roll

waves were obtained:
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1. The experimentally obtained h /h vs. T' relations did notmax n

agree with the theory in which the weight of the shock front was

neglected. After the theory was modified to include this weight, the

observed values of h /h were within an average of 6.5 percent
max n

of the predicted values, and the maximum discrepancy was 13.5

percent.

2. The modified theory,with the weight of the shock front included,

predicts a channel slope effect. such that for a given value of F and T f.

the value of h /h increases as the slope decreases. Furthermoremax n .

the modified theory predicts that the slope of the h /h vs. T'max n

relation (0 (h /h )/OTf), at a given value of h /h, increases as
max n max n

the channel slope decreases. These predicted channel slope effects on

the h /h vs. Tl relation were observed in the periodic wavemax n

experiments.

C. Conclusions concerning natural roll waves:

1. From results A 6 and B Z it can be concluded that with F held

fixed and for a given value of h /h in the final development phase,
max n

the growth rate of natural waves will decrease as the channel slope is

increased, providing the effect of the channel slope on the approxi-

mately linear portion of the T' vs. t/h relation is small compared to
n

its effeCt on the Ii /h VB. Tf relation. By comparing the natural
max n

roll wave results for the rough channel (8 =. 1192) with those of the
o

smooth channel at about the same Froude number (S =.05011), it was
o

found that the growth rates of the shock waves were appreciably less on

the larger slope.
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2. Based on the fact that, for a given Froude number and channel

slope, unique relations resulted when the measured wave properties

were expressed in terms of t and h (see result A 1), it is reasonable
n

to conclude that these same relations will be valid for any wide

rectangular channel with inlet conditions equivalent to those in the

laboratory, providing the Froude number and channel slope are the

same as those obtained in the laboratory. If, for the same Froude

number, the channel slopes are not the same, the growth rates of the

shock waves in the final development phase will be different than those

in the laboratory (see conclusion C 1).
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LIST OF SYMBOLS

area of cross section of flow

width of rectangular channel

dimensionless complex velocity =C
r

+ iC
i

dimensionless wave velocity =c/u
n

dimensionless number pertaining to growth rate

wave velocity

average wave velocity

geometric mean size of sand grains

Froude number of uniform flow =u / ../gil
n n

critical Froude number

Darcy- Weisbach friction factor

acceleration of gravity

depth of flow normal to channel floor

normal depth of uniform flow

a depth defined by h3 =Ka/g
c

mean depth of shock front

critical depth = (qa/ g)1/3

average depth over a wave length

depth at wave crest and average depth of wave crests
respectively

maximum value of h
max

depth at wave trough and average depth of wave troughs
respectively

dimensionless depth =h/h
n

a constant of integration with units of discharge per unit
width =(c -u)h
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LIST OF SYMBOLS (Cont'd)

k geom.etric m.ean size of sand grains

t distance along channel from. beginning of channel

L. length of shock front
J

Q discharge

q discharge per unit width

qav average discharge per unit width over a wave length

R Reynolds num.ber = 4ru Ivn

r hydraulic radius

So channel slqpe = sin e
T wave period

T average wave period
av

T' dim.ensionless wave period = S T .jg/h or S T ./iiTho n 0 av n

t tim.e

t l dim.ensionless time =u tl"J...n

U dim.ensionless velocity = u/un

U I dim.ensionless perturbation velocity = u/u - 1n

u average velocity over cross section of flow = QI A

u velocity in x-direction at distance y from. channel bottom.
p

u norm.al velocity
n

u* shear velocity =.j'fo I p

u •u. velocity at wave crest and trough respectively
m.ax mln

W weight of shock front per unit width

x cartesian coordinate parallel to channel bottom.

X coordinate moving in x-direction at velocity c. X =x - ct
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y

y
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p
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*

214

LIST OF SYMBOLS (Cont'd)

dimensionless parameter =S A /F2 ho n

cartesian coordinate perpendicular to channel bottom

velocity distribution coefficient

specific weight of fluid

thickness of laminar sublayer

dimensionless perturbation depth = h/h - 1
n

angle of inclination of channel bottom

kinematic viscosity of fluid

wave length

mass density of fluid

standard deviation

geometric standard deviation of sand sizes

shear stress in x-direction averaged over the channel
boundaries

denotes division by h e. g. h* =h /h
c n n c

average frequency of wave overtakes in a reach of channel
/).~
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APPENDIX I

Discussion by the writer of "Critical analysis of open-channel

resistance 11 by Hunter Rouse(17).

Published in the Proceedings of the American Society of Civil

Engineers, Journal of the Hydraulics Division, 92, HY2, March, 1966,

pp. 403-409.

The following correction should be made: p. 406, last para-

graph, 2nd sentence, should read "To aid in the determination of the

water-surface levels with the point gage, a static pressure-tap installed

flush with the flume floor was used. 11

The writer received the J. C. Stevens Award for 1966 from the

American Society of Civil Engineers for this discussion.
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RICHARD R. BROCK,72 A. M. ASCE.-This discussion wUl be confined to
the sectionof the paper deal~with free-surface instabilityleading to the de­
velopment of .1'011 waves. Following the ordel' of presentation in the author's
paper, these comments will deal with the stabUlty criterion as derived from
Eq. 26, experimental data on friction factors in smooth rectangular channels,
and the author's hypothesis that, "In reality, the augmented rate of loss in-

. dicated by mean-flow considerations is not a true dissipation but.a transfor­
maUon from mean-flow energy to wave energy."

Stability Analysis,-The author's criterion for stability for wide rectangular
chalinels as expressed by Eqs. 29 and 30 indicates that F8 is a function of f
only. Actually, K is also involved because the numerical factor 1.30 in Eq. 29
was evaluated from 3/2~", and 0.87 in Eq. 30was evaluated from t/.f8K• ~or
the commonly accepted value of K of 0.40, these factors would be 1.326 and
0.884. The author's factors result when K RI.0.407 is used.

It should be kept in mind that this stability analysis is only valid for sur­
face disturbances that have wave lengths that are long compared to the depth.
This restriction comes from the fact that the Shallow water wave eqUations
used, are based on a hydrostatic poessure distribution.

Experimental Data in Smooth Rectangular Channels. -The author cites data
by Nemec in a smooth rectangular channel which shows that an unstable flow .
has a higher friction factor than a stable flow at the same Reynolds number.
The criterion ofstab1lity used was Eq. 29. To the writer's knOWledge( the only
otherdata that shows this effectin smooth channels is that of Powell. 5) How­
ever, published data by Tracy73 and unpublished data by the writer obtained
at the California Institute of Technology (CIT), to be presented herein, indi~ate

that the friction factor does not depend on the Froude number even when the
values are in excess of those given by Eq. 29 and instability is expected. These
contradictory findings are quiteperplexing and an explanation for the discrep­
ancy is necessary for a complete acceptance of one or both findings. In this
cl1scusslon, an explanation of the cmtradictlon will not be given. Instead, for
each of the experilnents, a short description of the apparatus and techniques
used wID be given where available. Also, the results will be shown on an f-R
plot for each experiment. In addition, a few comments will be made concerning
experimental procedure that may help to explain why differences in findings
do exist.

Before going to the four sets ofexperiments inquestion, some brief general
remarks on measuring friction factors are in order. The normal method of
obtaining friction factors involves measuring the discharge, depth, and flume
slope, and then calculating f by Eq. 27a. In most cases, the discharge and slope
ate quite accurate. Assuming that discharge and slope are fixed for a rec­
tangular channel of width b, the variation of f with d is given by

72 NSF Graduate Trainee, California Inst. of Teoh., Pasadena, Calif.
73 Tracy,H. J., and Lester, C. M., '"ReslBtanceCoefficients and Velocity Distribution

Smooth Rectangular Channel," Water Supply Paper 1592-A, Goo!. Survey,U. S. Dept. of
the IDterior, WashiDgton, D. C., 1961. .
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!f = 11++22d~9b ~;) 3 (77)

in which f and ft are the friction factors corresponding to depths d and d',
respectively. This shows, for example that in a wide channel, a 5% positive
error in measuring d(d'/d = 1.05) results in a 15.8%positive error in f(f'/f=
1.158).

Obviously, one method of minimizing errors in measuring the depth is to
run at high depths, which is generally the case in subcritical flow. However,
for supercritical flow in the laboratorY, the depths are generally consideribly
smaller because the slopes are larger and the discharge capacity is limited.
Thus, it can generally be stated that an accurate measurement of depth is
needed to assure a reliable f value, especially in supercritical flow.

The stability analysis indicates that, if the Froude number is above a cer­
tain value, small sinusoidal disturbances on the free surface will be amplified.
These amplifying disturbances presumably lead to the large amplitude waves
called roll waves. However, this process requires some length along the
channel in which the sntall waves can grow. It has been the writer's experience
thal, for flows of appreciable depth, the usual laboratory flume is not long
enough for waves to grOw sufficiently so that they are visible to the eye. Only
when the depth of flow is small and the slope is large can surface disturbaJices
be observed near the downstream end of the flume. Because of this, friction
factors in an unstable flow are measured in the reach where the flow is at nor­
mal depth and the surface disturbances that eventually leadto roll waves .have
not developed appreciably.

Nemec's data, shown in Fig. 17, were obtained in a smooth rectangular
channel 2.5 ft Wide, 85 it long, having glass floor and walls. The numerical
data for plotting Fig. 17 were read from Fig. 10. The experimental technique
followed by Nemec is not available and it is hoped that the author will supply
this in his closure; In plotting Fig. 17 all of the points for stable flows from
Fig. 10 were used, but only four of the points for unstable flows were used in
each group with apprOXimately equal Reynolds numbers. In selecting these
four points, the two extreme values of f were used as well as two points be­
tween these extremes.

Fig. 17 shows that the friction factor for unstable flow can be considerably
larger than for stable flow. At R = 5.2 x 104, the maximumf is 32% larger than
the value on the curve based on stable flow, and at R = 6.7 x 105, the maximum
f is 16%higher. From Fig. 10, it can be seen that, for a constant Froude num­
ber, the percentage increase in f is greatest at the lower lteynolds numbers.
This observation may be related to the fact that, for a constant F, the depth in­
creases with R, and thus if aconstant fl,bsolute error is made in measuring the
depth, the resulting error in f would be larger at the lowe·r values of R.

Powell's5 results from a smooth rectangular channel at Iowa State Univer­
sity are shown in Fig. 18. The flume was 8 in. Wide, 50 ft long, and lucite
walls, and a structural steel floor protected with aluminum paint. The four
flume slopes used and the resulting ranges in Froude numbers are also shown
on Fig. 18. For the maximum slope, where the flow is unstable, the f values
are well above the curve obtained from data for the other three slopes where
the flow is stable. The equation shown was determined by the writer and is
not the one Powell reported.
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From Powell's report5 it was determined that a static pressure tube was
used to measure the depth atflve locations over the length of the flume. This

,tube was connected to a well where hook gages were used to measure the water
level. No mention was made of any surface disturbances that would lead to
roll waves, and none would be expected in the short channel used.

Inview of the importance of an accurate depth measurement in supercritical
flow, it seems that only. five measurements over the length of the flume are
inadequate. The technique of using a static pressure tube in a high velocity
flow has the objection that a Slight misalinement of the tube may cause a part
of the relatively large dynamic head to be recorded also. Finally, the writer
questions whether PoweU had uniform flow conditions, because his tabulated
energy slopes were notequal to the flume slopes. Comparing Figs. 17 and 18
shows that the percentage increase in f (to 66%) for the unstable flows in
Powell's experiments is considerably larger than Nemec found for the same
Reynolds number.

Tracy73 used a smooth rectangular flume at the Georgia Institute of Tech­
nology which was 3.5 ft wide, 80 ft long, had steel walls and floor covered by
one seal coat and two coats of synthetic enamel, and had a motorized slope
control. Tracy's results for 49 runs ranging in Froude number from 0.144 to
3.96 are shown in Fig. 19. It is seen that one relationship adequately fits all
the data. .

Water-surface profiles were obtained from point-gage rea~iings taken at
l·ft intervals over the length of the flume and at five locations in the cross
section. In supercritical flow. the 82 and 83 profiles vary gradually when near
the normal depth, as do the Ml and M2 profiles in subcritical flow. Because
these gradual variations may not be perceptible over a short distance, Tracy
measured both of the profiles and then the normal depth was interpolated be­
tween them.

Tracy stated73 that, in supercritical flow, the free surface was "character­
ized by highly agitated transverse waves of short length." Considering the
length of his channel and the depths of flow used, the waves he referred to are
not the small roll wave disturbances that are sometimes visible at the down­
stream end of flumes. Rather, these waves are probably of the type that are
inherent with turbulent flow. To obtain a mean depth, Tracy measured the
elevation of the crest and the trough of these waves and the average was used
as the mean depth. It is significant that this method agreed well with measure­
ments made with static pressure-taps installed in the flume floor.

The writer has made a few friction factor measurements in supercritical
(1.19sFS2.88) flow at CIT which do not show a Froude number dependence.
The basic data are presented in Table 2 and Fig. 20 shows the f-R plot. The
flume is 3.61 ft wide, 130 ft long, has glass side walls and a stainless steel
floor. The flume slope is varied by means of electrically-operated mechanical
jacks.

Point-gage readings at five location's in the cross section and at 5-m inter­
vals along the flume determined the water surface profiles. To aid in the
determination of the water-surface levels with the point gage, a static pressure
at the pressure-tap installed flush with the flume floor was used. A continuous
recording of the static pressure at the pressure-tap location was provided by
a strip paper recorder and a pressure transducer. From this recording, the
average static pressure (depth) at the pressure-tap location was obtained.
,Then the point-gage was set at thiS average depth and the appearance of the



TABLE 2.-CIT DATA FOR A SMOOTH RECTANGULAR CHANNEL

Q. v.In
d, R, In T.. v.1n

Run S
cubic

in In feet f R F in square feet f'/ffeet degrees per second
feet feet perper

second centigrade
second

1 0.003984 0.904 0.111 0.105 2.25 0.0212 8.99X "t04 1.19 21.3 1.049x 10-5 1.044

2 0.006085 0.884 0.0938 0.0891 2.61 0.0205 8.87 X 104 1.50 21.3 1.M9 X 10-5 1.052

3 0.01942 0.878 0.0639 0.0618 3.80 0.0213 8.83 X 104 2.65 20.7 1.064X 10-5 1.078

4 0.009979 1.41 0.105 0.0993 3.71 0.0186 1,42X 105 2.02 21.9 1.036 X 10-5 1.047

5 0.004069 2.42 0.200 0.180 3.35 0.0168 2.27X 105 - 1.32 20.8 1.060 X 10-5 1.024

6 0.009979 2.42 0.146 0.135 4.59 0.0165 2.40X 105 2:12 21.9 1.036 X 10-5 1.033

7 0.01942 2.44 0.120 0.112 5.64 0.0176 2.39X 105 2.88 20.8 ' 0.060 X 10-5 1.041
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water surface at the point was observed both from above and the side. Armed
with this visual picture of the water surface in contact with the point at the
average depth level, the point-gage readings were taken at the locations indi­
cated above. Occasionally during the run, the point-gage was returned to the
pressure-tap location to check on the visual method of setting the point at the
average depth.

Using this procedure to find the average depth, it was found that readings
could be repeated within approximately 0.02 cm to 0.04 cm. To get some idea
of the accuracy of the f values, Eq. 77 was used with d' = d +0.05 cm and the
resulting values of f'lf are shown in Table 2. The most error occurs for the
lowest depth which was in Run 3. Small waves, apparently resulting from a
free surface instability, were ·clearly visible at the lower end of the flume for
Run 3 only. These waves impaired the depth measurement and the normal

.030

.025

f

.020

.015

.010

Ik" ~03 log R"'-1.40

/ f .

HIt-
~---~ -

6 8 1.5

4RV
R= 71

2

FIG. 20.-CIT DATA FOR A SMOOTH RECTANGULAR CHANNEL

depth was taken from the water surface profile upstream oUhe point where
these waves first appeared. It is interesting to note that the relationship in
Fig. 20 gives friction factors less than 3% greater than Tracy's relationship
over the range of Reynolds numbers tested.

Wave Energy.-In the final paragraph of the paper, the author presents the
idea that the increased friction factors in unstable flow, as found by Nemec,
result from assuming that all of the computed energy loss is from boundary
resistance alone. The author indicates that, in reality, a part of this computed
energy loss has been transformed from "mean-flow energy to wave energy."

Considering a uniform flow in a wide rectangular channel, the rate at Which
energy is supplied to the flow, per unit surface area, is 'Y SVd, and the rate
of energy dissipation because of boundary resistance is p V3 f/8 per unit sur­
face area. If the writer interprets the author's concept correctly, in unstable
flow there is also an energy dissipation rate associated with the small-ampli­
tude progressive waves on the surface of the flow. Let the rate of this energy
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dissipation per unit surface area be Ow. Conservation of energy requires that

V3
fySVd =L- + D •.•..•..•..•... (78)

8 w

If fi is the friction factor computed with Ow =0, Eq. 78 gives

fi 1
7 D

w
••••••••••••••••• (79)

1 -
"SVd

which indicates that a friction factor computed by neglecting the dissipation
associated with the waves is larger than the true friction factor that refiects
only the dissipation caused by boundary resistance.

Eq. '19 indicates that, unless Ow is not small compared to" SVd, the two
friction factors are essentially the same. Although the exact form Dw is not
known, it certainly depends on the amplitude of the surface waves in some
manner, because for a stable flow (no surface waves) Dw = O. Thus, for un­
stable flows that have small surface wave amplitudes, the writer feels that the
term OwlY SV d, must be considerably less than unity. The experiments by
Tracy and the writer tend to- confirm this. Some analytical work on the form
of Dw would be a significant contribution to this problem.

Summary.-The main purpose of this discussion was to bring out the fact
that contradictory findings exist regarding the Froude number effect on
friction factors in unstable now. Findings from several sources were shown
in a similar manner to permit direct comparison. Some of the techniques and
apparatus used toobtain the data were discussed where possible. The impor­
tance of an accurate depth measurement was emphasized. The writer's inter­
pretation of the author's explanation for increased friction factors in unstable
flow was presented. This required an energy dissipation rate associated with
the surface waves to be introduced. The form of this dissipation term is not
known, but the writer feels that it is negligible for small amplitude waves.

Acknowledgments.-The writer Wishes to thank his advisor, V. A. Vanoni,
for suggesting this discussion, and for his helpful criticism during its
preparation.




